1、八年级数学下册期末试卷测试卷附答案一、选择题1若二次根式有意义,则的取值范围是( )ABCD2已知下列三角形的各边长:3、4、5,3、4、6,5、12、13,5、11、12其中直角三角形有()A4个B3个C2个D1个3如图,在四边形中,要使四边形成为平行四边形,则应增加的条件是( )ABCD4将80辆环保电动汽车一次充电后行驶里程记录数据,获得如图所示条形统计图,根据统计图所测数据的中位数、众数分别是( )A165,160B165,165C170,165D160,1655如图的网格中,每个小正方形的边长为1,A,B,C三点均在格点上,结论错误的是( )AAB=2BBAC=90CD点A到直线BC
2、的距离是26如图,菱形的对角线相交于点,于点,连接,若,则的度数是( )A25B22.5C30D157如图,在中,点为边上任意一点过点分别作于点,于点,则线段的最小值是( )A2B2.4C3D48如图,已知A(3,1)与B(1,0),PQ是直线上的一条动线段且(Q在P的下方),当AP+PQ+QB最小时,Q点坐标为( )A(,)B(,)C(0,0)D(1,1)二、填空题9若式子有意义,则实数a的取值范围是_10如图,菱形的对角线,相交于点,已知,菱形的面积为24,则的长为_11如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边
3、长为b若ab4,大正方形的面积为16,则小正方形的边长为_12如图,将矩形沿对角线折叠,使点在点处,与交于点若,则的长为_13已知A(2,2),B(2,3),若要在x轴上找一点P,使AP+BP最短,此时点P的坐标为_14如图,在四边形中,分别是,的中点,要使四边形是菱形,四边形还应满足的一个条件是_15如图,在平面直角坐标系中,等腰在第一象限,且轴直线从原点O出发沿x轴正方向平移在平移过程中,直线被截得的线段长度n与直线在x轴上平移的距离m的函数图象如图所示,那么的面积为_16若函数y=mx2+2(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为_三、解答题17解下列各题计算:(1);
4、(2);(3);(4)18如图,一架梯子AB斜靠在一竖直的墙OA上,这时AO3m,OAB30,梯子顶端A沿墙下滑至点C,使OCD60,同时,梯子底端B也外移至点D求BD的长度(结果保留根号)补充:直角三角形中,30所对的直角边是斜边的一半19如图,每个小正方形的边长都为1,AB的位置如图所示(1)在图中确定点C,请你连接CA,CB,使CBBA,AC5;(2)在完成(1)后,在图中确定点D,请你连接DA,DC,DB,使CD,AD,直接写出BD的长20如图,在矩形中,垂直平分对角线,交于,交于,交于,连接,(1)求证:四边形是菱形;(2)若为的中点,求的度数21阅读下列材料,然后回答问题:在进行类
5、似于二次根式的运算时,通常有如下两种方法将其进一步化简:方法一: 方法二: (1)请用两种不同的方法化简: ;(2)化简: .22杆称是我国传统的计重工具,如图1,可以用秤砣到秤纽的水平距离x(厘米),来得出秤钩上所挂物体的重量y(斤)如表中为若干次称重时所记录的一些数据 x(厘米)124711y(斤)0.751.001.502.253.25(1)请在图2平面直角坐标系中描出表中五组数据对应的点;(2)秤钩上所挂物体的重量y是否为秤纽的水平距离的函数?如果是,请求出符合表中数据的函数解析式;(3)当秤钩所挂物重是4.5斤时,秤杆上秤砣到秤纽的水平距离为多少厘米?23将两张宽度相等的纸片叠放在一
6、起,得到如图的四边形(1)求证:四边形是菱形;(2)如图,联结,过点A、D分别作的垂线、,垂足分别为点F、E设M为中点,联结、,求证:;如果,P是线段上一点(不与点A、C重合),当为等腰三角形时,求的值24如图,平面直角坐标系中,O为原点,直线yx+1分别交x轴、y轴于点A、B,直线yx+5分别交x轴、y轴于点C、D,直线AB、CD相交于点E(1)请直接写出A、D的坐标;(2)P为直线CD上方直线AE上一点,横坐标为m,线段PE长度为d,请求出d与m的关系式;(3)在(2)的条件下,连接PC、PD,若CPD135,求点P的坐标25如图1,四边形是正方形,点在边上任意一点(点不与点,点重合),点
7、在的延长线上,(1)求证:;(2)如图2,作点关于的对称点,连接、,与交于点,与交于点与交于点若,求的度数;用等式表示线段,之间的数量关系,并说明理由【参考答案】一、选择题1B解析:B【分析】根据二次根式有意义的条件列式求解即可【详解】解:二次根式有意义x30,即:x3故选:B【点睛】本题主要考查了二次根式有意义的条件,二次根式有意义的条件是被开方数大于等于零2C解析:C【分析】判断是否可以构成直角三角形,只需验证两小边的平方和是否等于最长边的平方,即可得出答案【详解】解:,能构成直角三角形;,不能构成直角三角形; ,能构成直角三角形;,不能构成直角三角形;其中直角三角形有2个;故选:C【点睛
8、】本题主要考查了勾股定理的逆定理:如果三角形的三边长,满足,那么这个三角形就是直角三角形3B解析:B【解析】【分析】根据平行四边形的判定方法,以及等腰梯形的性质等知识,对各选项进行判断即可【详解】A.错误,当四边形是等腰梯形时,也满足条件B.正确,四边形是平行四边形C.错误,当四边形是等腰梯形时,也满足条件D.错误,与题目条件重复,无法判断四边形是不是平行四边形故选:B【点睛】本题考查了平行四边形的判定和性质,平行线的判定,等腰梯形的性质等知识,解题的关键是熟练掌握平行四边形的判定方法4B解析:B【解析】【分析】由中位数和众数的定义结合条形统计图即可得出答案【详解】根据题意有80辆电动汽车为偶
9、数个,根据统计图可知最中间的两个数都为165,故中位数=,165出现了20次,为最多,即众数为165故选:B【点睛】本题考查中位数和众数的定义,从条形统计图中获取必要的信息是解答本题的关键5C解析:C【分析】根据勾股定理以及其逆定理和三角形的面积公式逐项分析即可得到问题答案【详解】解:AB=,故选项A正确,不符合题意;AC,BC,ACB是直角三角形,CAB=90,故选项B正确,不符合题意;SABC,故选项C错误,符合题意;点A到直线BC的距离,故选项D正确,不符合题意;故选:C【点睛】本题考查了勾股定理以及逆定理的运用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方如果直角
10、三角形的两条直角边长分别是a,b,斜边长为c,那么 熟记勾股定理的内容是解题得关键6B解析:B【解析】【分析】求出HDO,再证明DHO=HDO即可解决问题;【详解】,.四边形是菱形,.,.故选B.【点睛】此题考查菱形的性质,解题关键在于掌握菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角判断OH为直角三角形斜边上的中线7B解析:B【解析】【分析】求出四边形PECF是矩形,根据矩形的性质得出EF=CP,根据垂线段最短得出CPAB时,CP最短,根据三角形的面积公式求出此时CP值即可【详解】解:连接CP,PEAC,PFBC,ACB=90,PEC
11、=ACB=PFC=90,四边形PECF是矩形,EF=CP,当CPAB时,CP最小,即EF最小,在RtABC中,C=90,AC=3,BC=4,由勾股定理得:AB=5,由三角形面积公式得:ACBC=ABCP,CP=,即EF的最小值是=2.4,故选:B【点睛】本题考查了勾股定理,三角形的面积,矩形的性质和判定,垂线段最短等知识点,能求出EF最短时P点的位置是解此题的关键8A解析:A【分析】作点B关于直线y=x的对称点(0,1),过点A作直线MN,使得MN平行于直线y=x,并沿MN向下平移单位后,得(2,0),连接交直线y=x于点Q,求出直线解析式,与y=x组成方程组,即可求出Q点的坐标【详解】解:作
12、点B关于直线y=x的对称点(0,1),过点A作直线MN,使得MN平行于直线y=x,并沿MN向下平移单位后,得(2,0),连接交直线y=x于点Q,如下图所示,四边形是平行四边形,且,当值最小时,值最小根据两点之间线段最短,即三点共线时,值最小(0,1),(2,0),直线的解析式,即,Q点的坐标为(,)故答案选A【点睛】本题主要考查了一次函数图像上点的坐标特征、最短路径问题二、填空题9a2且a1【解析】【分析】直接利用二次根式的性质得出a的取值范围【详解】解:式子有意义,且;故答案为:且;【点睛】此题主要考查了二次根式的性质,正确掌握二次根式的性质是解题关键10A解析:6【解析】【分析】根据菱形的
13、性质得到AC=8,根据菱形的面积等于两条对角线乘积的一半,即可求解【详解】解:四边形ABCD为菱形;AC=2OA=8,,BD=6,故答案为:6【点睛】本题考查了菱形的性质,解题的关键是熟记菱形面积的两种表示法:(1)底乘高,(2)对角线乘积的一半,本题运用的是第二种11【解析】【分析】由题意可知:中间小正方形的边长为a-b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长【详解】解:由题意可知:中间小正方形的边长为a-b,每一个直角三角形的面积为:ab=4=2,4ab+ =16,=16-8=8,a-b=2,故答案为:2【点睛】本题考查勾股定理的应用,解题的关键是熟练运用勾股定理以及完全
14、平方公式,本题属于基础题型12E解析:【分析】由矩形和折叠的性质得到E=D=90,AE=AB=CD,CE=BC,证明AEFCDF,李永明勾股定理求出AE,再利用勾股定理即可求出AC【详解】解:四边形ABCD是矩形,E=D=90,由折叠可知:AE=AB=CD,CE=BC,又AFE=CFD,AEFCDF(AAS),EF=DF=4,AF=CF=5,AE=3,AB=CD=3,BC=AD=AF+DF=5+4=9,AC=,故答案为:【点睛】本题考查的是翻转变换的性质,矩形的性质,勾股定理,解题的关键是根据折叠得到相等的边和角,从而证明三角形全等13A解析:(-0.4,0)【分析】点A(-2,2)关于x轴对
15、称的点A(-2,-2),求得直线AB的解析式,令y=0可求点P的横坐标【详解】解:点A(-2,2)关于x轴对称的点A(-2,-2),设直线AB的解析式为y=kx+b,把A(-2,-2),B(2,3)代入,可得 ,解得 ,直线AB的解析式为y=x+,令y=0,则0=x+,解得x=-0.4,点P的坐标为(-0.4,0),故答案为(-0.4,0)【点睛】本题综合考查待定系数法求一次函数解析式,一次函数图象上点的坐标特征,两点之间线段最短等知识点凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点14【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得且,同理可
16、得且,且,然后证明四边形是平行四边形,再根据邻边相等的平行四边形是菱形解答【详解】解:还应满足理由如下:,分别是,的中点,且,同理可得:且,且,且,四边形是平行四边形,即,是菱形故答案是:【点睛】本题考查了中点四边形,其中涉及到了菱形的判定,平行四边形的判定,三角形的中位线定理,根据三角形的中位线平行于第三边并且等于第三边的一半得到四边形的对边平行且相等从而判定出平行四边形是解题的关键,也是本题的突破口152【分析】过点作于,设经过点时,与的交点为,根据函数图像,找到经过点和经过点的函数值分别求得,由与轴的夹角为45,根据勾股定理求得,根据等腰三角的性质求得,进而求得三角形的面积【详解】如解析
17、:2【分析】过点作于,设经过点时,与的交点为,根据函数图像,找到经过点和经过点的函数值分别求得,由与轴的夹角为45,根据勾股定理求得,根据等腰三角的性质求得,进而求得三角形的面积【详解】如图,过点作于由图可知,当直线平移经过点时,;随着平移,的值增大;如图,当经过点时,与的交点为,如图此时,则,与轴的夹角为45,为等腰直角三角形,即是等腰三角形,故答案为:2【点睛】本题考查了一次函数图像的平移,等腰三角形的性质,勾股定理,从函数图像上获取信息,及掌握与轴的夹角为45是解题的关键16或0【分析】当m=0时,函数y=4x+1的图象与x轴有一个交点,当m0时,抛物线y=mx2+2(m+2)x+m+1
18、的图象与x轴只有一个交点,即方程mx2+2(m+2)x+m+1=0只有一个解析:或0【分析】当m=0时,函数y=4x+1的图象与x轴有一个交点,当m0时,抛物线y=mx2+2(m+2)x+m+1的图象与x轴只有一个交点,即方程mx2+2(m+2)x+m+1=0只有一个根,根据根的判别式为0求出m的值【详解】分两种情况讨论:当m=0时,函数y=4x+1的图象与x轴有一个交点;当m0时,函数y=mx2+2(m+2)x+m+1的图象是抛物线,若抛物线的图象与x轴只有一个交点,则方程mx2+2(m+2)x+m+1=0只有一个根,即44m(m+1)=0,解得:m综上所述:m的值为或0故答案为或0【点睛】
19、本题考查了抛物线与x轴交点的知识,解答本题的关键是对函数二次项系数m进行分类讨论,此题难度不大,但是很容易出现错误三、解答题17(1);(2);(3);(4)【分析】(1)先把各二次根式化为最简二次根式,然后合并即可得到答案;(2)原式从左向右依次计算即可得到答案;(3)原式根据零指数幂、负整数指数幂、二次根式的乘解析:(1);(2);(3);(4)【分析】(1)先把各二次根式化为最简二次根式,然后合并即可得到答案;(2)原式从左向右依次计算即可得到答案;(3)原式根据零指数幂、负整数指数幂、二次根式的乘法以及绝对值的意义代简各项后,再外挂;(4)原式利用平方差分工和完全平方公式进行计算即可得
20、到答案【详解】解:(1)=;(2)= =;(3)=;(4)= =【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则,运算顺序以及灵活运用乘法公式是解答本题的关键183(m)【分析】先在RtOAB中,OA3m,OAB30,求出梯子AB的长,在滑动过程中梯子的长是不变的,再根据已知条件证明出AOBDOC,即可求出BD长【详解】解:在Rt解析:3(m)【分析】先在RtOAB中,OA3m,OAB30,求出梯子AB的长,在滑动过程中梯子的长是不变的,再根据已知条件证明出AOBDOC,即可求出BD长【详解】解:在RtABO中,AO3m,OAB30,AB,OCD60,ODC30,在AOB和DOC中,AO
21、BDOC(AAS),OAOD,OCOB,BDODOB3(m)【点睛】本题考查了勾股定理解直角三角形,三角形全等的性质与判定,求出的长是解题的关键19(1)见解析;(2)【解析】【分析】(1)利用网格即可确定C点位置;(2)由勾股定理在RtDBG中,可求BD的长【详解】解:(1)如图,BCAB,在RtACH中,A解析:(1)见解析;(2)【解析】【分析】(1)利用网格即可确定C点位置;(2)由勾股定理在RtDBG中,可求BD的长【详解】解:(1)如图,BCAB,在RtACH中,AC5;(2)CD,AD,可确定D点位置如图,在RtDBG中,BD【点睛】本题考查勾股定理的应用,利用三角形内角和确定C
22、点位置,由勾股定理确定D点的位置是解题的关键20(1)见解析;(2)60【分析】(1)根据垂直平分线的性质,可以得到,由矩形的性质,得到, 根据平行线的性质,利用证明从而得到,结合上步所求,由四边相等的四边形是菱形即可得出结论(2)由解析:(1)见解析;(2)60【分析】(1)根据垂直平分线的性质,可以得到,由矩形的性质,得到, 根据平行线的性质,利用证明从而得到,结合上步所求,由四边相等的四边形是菱形即可得出结论(2)由题意,可以得到垂直平分 从而得出 结合题意可得 的度数,进而求得的度数【详解】(1)证明:垂直平分,四边形是矩形,四边形是菱形(2)为中点,垂直平分,为等边三角形,【点睛】本
23、题主要考查了矩形的性质,平行线的性质,全等三角形的判定,菱形的判定,等边三角形的判定和性质,熟练掌握这些性质及判定定理是解题关键21(1);(2)【解析】【分析】(1)首先理解题意,根据题目的解析,即可利用两种不同的方法化简求得答案;(2)结合题意,可将原式化为,继而求得答案【详解】解:(1)方法一:方法二:;解析:(1);(2)【解析】【分析】(1)首先理解题意,根据题目的解析,即可利用两种不同的方法化简求得答案;(2)结合题意,可将原式化为,继而求得答案【详解】解:(1)方法一:方法二:;(2)原式=【点睛】本题考查了分母有理化的知识此题难度较大,解题的关键是理解题意,掌握分母有理化的两种
24、方法22(1)见解析;(2)秤钩上所挂物体的重量y是秤纽的水平距离的函数,解析式为yx;(3)当秤钩所挂物重是4.5斤时,秤杆上秤砣到秤纽的水平距离为16厘米【分析】(1)利用描点法画出图形即可判解析:(1)见解析;(2)秤钩上所挂物体的重量y是秤纽的水平距离的函数,解析式为yx;(3)当秤钩所挂物重是4.5斤时,秤杆上秤砣到秤纽的水平距离为16厘米【分析】(1)利用描点法画出图形即可判断(2)设函数关系式为ykxb,利用待定系数法解决问题即可;(3)把y4.5代入(2)中解析式,求出x即可【详解】解:(1)如图所示:(2)由(1)图形可知,秤钩上所挂物体的重量y是秤纽的水平距离的函数,设yk
25、xb,把x1,y0.75,x2,y1代入可得:,解得:,yx;(3)当y4.5时,即4.5x,解得:x16,当秤钩所挂物重是4.5斤时,秤杆上秤砣到秤纽的水平距离为16厘米【点睛】本题考查一次函数的应用,待定系数法等知识,解题的关键是在直角坐标系内描出表中数据对应的点,通过图形求函数解析23(1)见解析;(2)见解析;或【分析】(1)首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形(2)过点作于,连接,由,可得,再证明解析:(1)见解析;(2)见解析;或【分析】(1)首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的面积可
26、得邻边相等,则重叠部分为菱形(2)过点作于,连接,由,可得,再证明,利用三角形内角和定理即可得出答案;设,则,设,则,根据勾股定理可得,即,从而得出,即可得到,根据是线段上一点(不与点、重合),不存在,可得出当为等腰三角形时,仅有两种情形:或,分类讨论即可求得答案【详解】解:(1)如图1,过点作于,于,两条纸条宽度相同,四边形是平行四边形,四边形是菱形;(2)如图2,过点作于,连接,则,四边形是菱形,与互相垂直平分,经过点,在和中,;,设,则,设,则,即,是线段上一点(不与点、重合),不存在,当为等腰三角形时,仅有两种情形:或,当时,则,如图3,;当时,如图4,过点作于点,在中,;综上所述,当
27、为等腰三角形时,的值为或【点睛】本题是四边形综合题,考查了平行四边形的判定与性质,菱形的判定与性质,全等三角形判定和性质,三角形面积公式,菱形面积,等腰三角形性质,勾股定理等,运用分类讨论思想和方程思想思考解决问题是解题关键24(1)A(1,0),D(0,5);(2)d(m2);(3)点P的坐标为(3,4)【解析】【分析】(1)分别令直线y=x+1,直线y=-x+5x0,y=0,即可求得A点坐标和D点坐标;解析:(1)A(1,0),D(0,5);(2)d(m2);(3)点P的坐标为(3,4)【解析】【分析】(1)分别令直线y=x+1,直线y=-x+5x0,y=0,即可求得A点坐标和D点坐标;(
28、2)过点P作PMx轴,交CD于F,M是垂足,先求出P、F的坐标,即可求出PE=2m4,再通过已知和辅助线判断PEF是等腰直角三角形,从而得出PE=PF,即可得出结论;(3)先过点C作CNDP,交DP的延长线于点N,连接OP,ON,过O作OGON,交PD的延长线于G,然后证明ODGOCN,再证明OCNOPN,得出OP=5,在直角三角形OMP中用勾股定理求解即可【详解】解:(1)直线yx+1分别交x轴、y轴于点A、B,令x0,则y1,令y0,则x1,A(1,0),B(0,1),又直线yx+5分别交x轴、y轴于点C、D,令x0,则y5,令y0,则x5,C(5,0),D(0,5)A(1,0),D(0,
29、5);(2)过点P作PMx轴,交CD于F,M是垂足,如图所示,由(1)知OAOB,OCOD,ABODCO45,AEC为等腰直角三角形,PEF90,又DCO45,EFPMFC45,PEF为等腰直角三角形,PEEFPF,P在直线yx+1上,P的横坐标为m,P(m,m+1),F在直线yx+5上,F的横坐标为m,F(m,m+5),PFm+1(m+5)m+1+m52m4,dPEPF(2m4)(m2);(3)过点C作CNDP,交DP的延长线于点N,连接OP,ON,过O作OGON,交PD的延长线于G,如图所示,DOCCND90,ODN+OCN180,又ODG+ODN180,ODGOCN,DOG90DON,C
30、ON90DON,DOGCON,在ODG和OCN中,ODGOCN(ASA),OGON,ONGOGN45,CNOPNO45,CPD135,CNDP,CPN45,PCN45,NPNC,在OCN和OPN中,OCNOPN(SAS),OPOC5,在RtOPM中,OP2OM2+MP2,52m2+(m+1)2,解得:m3或m4(舍去),m+14,点P的坐标为(3,4)【点睛】此题考查了一次函数与坐标轴的交点,勾股定理,坐标与图形性质,等腰直角三角形的判定与性质,关键是通过作辅助线证明三角形全等,把条件转化到直角三角形OPM中25(1)见解析;(2)45;GH2BH22CD2,理由见解析【分析】(1)证CBEC
31、DF(SAS),即可得出结论;(2)证DCPGCP(SSS),得DCPGCP,再解析:(1)见解析;(2)45;GH2BH22CD2,理由见解析【分析】(1)证CBECDF(SAS),即可得出结论;(2)证DCPGCP(SSS),得DCPGCP,再由全等三角形的性质得BCEDCPGCP20,则BCG130,然后由等腰三角形的性质和三角形内角和定理得CGH25,即可求解;连接BD,由得CP垂直平分DG,则HDHG,GHFDHF,设BCEm,证出GHFCHB45,再证DHB90,然后由勾股定理得DH2BH2BD2,进而得出结论【详解】(1)证明:四边形ABCD是正方形,CBCD,CBECDF90,
32、在CBE和CDF中,CBECDF(SAS),CECF;(2)解:点D关于CF的对称点G,CDCG,DPGP,在DCP和GCP中,DCPGCP(SSS),DCPGCP,由(1)得:CBECDF,BCEDCPGCP20,BCG202090130,CGCDCB,CGH,CHBCGHGCP252045;线段CD,GH,BH之间的数量关系为:GH2BH22CD2,理由如下:连接BD,如图2所示:由得:CP垂直平分DG,HDHG,GHFDHF,设BCEm,由得:BCEDCPGCPm,BCGmm902m90,CGCDCB,CGH,CHBCGHGCP45mm45,GHFCHB45,GHDGHFDHF454590,DHB90,在RtBDH中,由勾股定理得:DH2BH2BD2,GH2BH2BD2,在RtBCD中,CBCD,BD22CD2,GH2BH22CD2【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、线段垂直平分线的性质、勾股定理以及三角形内角和定理等知识;本题综合性强,熟练掌握正方形的性质,证明CBECDF和DCPGCP是解题的关键