收藏 分销(赏)

人教版部编版八年级数学下册期末试卷测试卷附答案.doc

上传人:快乐****生活 文档编号:1922182 上传时间:2024-05-11 格式:DOC 页数:30 大小:1.03MB
下载 相关 举报
人教版部编版八年级数学下册期末试卷测试卷附答案.doc_第1页
第1页 / 共30页
人教版部编版八年级数学下册期末试卷测试卷附答案.doc_第2页
第2页 / 共30页
人教版部编版八年级数学下册期末试卷测试卷附答案.doc_第3页
第3页 / 共30页
人教版部编版八年级数学下册期末试卷测试卷附答案.doc_第4页
第4页 / 共30页
人教版部编版八年级数学下册期末试卷测试卷附答案.doc_第5页
第5页 / 共30页
点击查看更多>>
资源描述

1、人教版部编版八年级数学下册期末试卷测试卷附答案一、选择题1函数y中自变量x的取值范围是()Ax1Bx0Cx0且x1Dx0且x12下列各组数中,能构成直角三角形的是( )A2,3,4B4,5,6C1,2D5,11,133下列命题:一组对边平行,另一组对边相等的四边形是平行四边形;对角线相等的四边形是矩形;对角线互相垂直平分的四边形是菱形;对角线互相垂直的矩形是正方形其中真命题的个数是()A1B2C3D44为了了解某校学生的课外阅读情况,随机抽查了10名学生一周阅读用时数,结果如下表,则关于这10名学生周阅读所用时间,下列说法中正确的是( )周阅读用时数(小时)45812学生人数(人)3421A中

2、位数是6.5B众数是12C平均数是3.9D方差是65如图,平行四边形ABCD的对角线AC与BD相交于点OCEAD于点E,AB2,AC4,BD8,则CE()ABCD6如图,在平行四边形中,将沿折叠后,点恰好落在的延长线上的点处若,则的周长为( )ABCD7ABCD的对角线AC、BD相交于点O,AE平分BAD交BC于点E, 且ADC60,ABBC,连接OE有下列结论:CAD=30; SABCD = ABAC ; OB=AB; OE=AB其中成立的有( )A1个B2个C3个D4个8一个容器内有进水管和出水管,开始4min内只进水不出水,在随后的8min内既进水又出水,第12min后只出水不进水.进水

3、管每分钟的进水量和出水量每分钟的出水量始终不变,容器内水量(单位:L)与时间(单位:min)之间的关系如图所示根据图象有下列说法:进水管每分钟的进水量为5L;时,;当时,;当时,或其中正确说法的个数是( )A1个B2个C3个D4个二、填空题9已知是实数,且满足,则的平方根是_10已知菱形的两条对角线长分别为1和4,则菱形的面积为_11九章算术是我国古代重要的数学著作之一,其中记载了一道“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?译为:如图所示,中,求的长在这个问题中,可求得的长为_12如阳,在矩形中,对角线、相交于点,点、分别是、的中点,若 cm,cm,则_ cm13已知

4、一次函数的图象过点,那么此一次函数的解析式为_14如图,在中,已知E、F、D分别是AB、AC、BC上的点,且,请你添加一个_条件,使四边形AEDF是菱形15正方形,按如下图所示的方式放置点,和点,分别在直线和轴上,已知正方形的边长为,正方形边长为,则的坐标是_16如图,在RtABC中,ACB=90,AC=6,BC=8,将边AC A沿CE翻折,使点A落在AB上的点D处;再将边 BC沿CF翻折,使点B落在CD的延长线上的点B处,两条折痕与斜边AB分别交于点 E、F,则BFC 的面积为_三、解答题17计算(1) (2) (3)18如图,货船和快艇分别从码头A同时出发其中,货船沿着北偏西54方向以15

5、海里/小时的速度匀速航行,快艇沿着北偏东36方向以36海里/小时的速度航行,1小时后两船分别到达B、C点求B、C两点之间的距离19如图,在44的网格直角坐标系中(图中小正方形的边长代表一个单位长),已知点A(1,1),B(2,2)(1)线段AB的长为 ;(2)在小正方形的顶点上找一点C,连接AC,BC,使得SABC用直尺画出一个满足条件的ABC;写出所有符合条件的点C的坐标20如图,在ABCD中,过点D作DFBC于点F,点E在边AD上,AE=CF,连结BE、CE(1)求证:四边形BFDE是矩形(2)若DE=AB,ABC=130,求DEC的度数21阅读理解题:定义:如果一个数的平方等于1,记为i

6、21,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘、除运算与代数式的运算类似例如:计算:(2i)+(5+3i)(2+5)+(1+3)i7+2i;(1+i)(2i)12i+2ii22+(1+2)i+13+i;根据以上信息,完成下列问题:(1)填空:i3 ,i4 ,i+i2+i3+i2021 ;(2)计算:(1+i)(34i)(2+3i)(23i);(3)已知a+bi(a,b为实数),求的最小值22亮亮奶茶店生产、两种奶茶,由于地处旅游景点区域,每天都供不应求,经过计算,亮亮发现种奶茶每杯生产时间为4分钟,种奶茶每杯

7、生产时间为1分钟,由于原料和运营时间限制,每天生产的总时间为300分钟(1)设每天生产种奶茶杯,生产种奶茶杯,求与之间的函数关系式;(2)由于种奶茶比较受顾客青睐,亮亮决定每天生产种奶茶不少于73杯,那么不同的生产方案有多少种?(3)在(2)的情况下,若种奶茶每杯利润为3元,种奶茶每杯利润为1元,求亮亮每天获得的最大利润23定义:有一组对边相等且这一组对边所在直线互相垂直的凸四边形叫做“等垂四边形”(提出问题)(1)如图,四边形与四边形都是正方形,求证:四边形是“等垂四边形”;(类比探究)(2)如图,四边形是“等垂四边形”,连接,点,分别是,的中点,连接,试判定的形状,并证明;(综合运用)(3

8、)如图,四边形是“等垂四边形”,则边长的最小值为_24如图,在平面直角坐标系中,点的坐标为,点在轴正半轴上(),把线段绕点顺时针旋转得到线段,过点分别向轴,轴作垂线,垂足为,(1)求四边形的面积;(2)若,求直线的表达式;(3)在(2)的条件下,点为延长线上一点,连接,作的平分线,交轴于点,若为等腰三角形,求点的坐标25已知正方形与正方形(点C、E、F、G按顺时针排列),是的中点,连接,.(1)如图1,点在上,点在的延长线上, 求证:=ME,.ME简析: 由是的中点,ADEF,不妨延长EM交AD于点N,从而构造出一对全等的三角形,即 .由全等三角形性质,易证DNE是 三角形,进而得出结论.(2

9、)如图2, 在的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(3)当AB=5,CE=3时,正方形的顶点C、E、F、G按顺时针排列.若点在直线CD上,则DM= ;若点E在直线BC上,则DM= .26如图1,若是的中位线,则,解答下列问题:(1)如图2,点是边上一点,连接、若,则 ;若,连接,则 , , (2)如图3,点是外一点,连接、,已知:,求的值;(3)如图4,点是正六边形内一点,连接、,已知:,求的值【参考答案】一、选择题1D解析:D【分析】根据二次根式有意义的条件列出不等式,解不等式即可【详解】解:由题意得,x0且x10,解得:x0且x1,故选:

10、D【点睛】本题考查的是函数自变量的取值范围,自变量的取值范围必须使含有自变量的表达式都有意义当表达式的分母中含有自变量时,自变量取值要使分母不为零当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零2C解析:C【分析】根据勾股定理的逆定理对四组数据进行逐一判断即可【详解】解:A、22 +32 4 2 ,不能构成直角三角形; B、42 +52 62 ,不能构成直角三角形; C、 ,能构成直角三角形; D、5 2 +11 2 13 2 ,不能构成直角三角形 故选C【点睛】本题考查了用勾股定理的逆定理判断三角形的形状,即只要三角形的三边满足a 2 +b 2 =c 2 ,则此三角形是直角

11、三角形3B解析:B【解析】【分析】根据平行四边形、矩形、菱形和正方形的判定直接进行判断即可【详解】解:一组对边平行且相等的四边形是平行四边形,原命题是假命题;对角线相等的平行四边形是矩形,原命题是假命题;对角线互相垂直平分的四边形是菱形,是真命题;对角线互相垂直的矩形是正方形,是真命题;故选:B【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理4D解析:D【解析】【分析】根据平均数,中位数,众数和方差的意义分别对每一项进行分析即可得出答案【详解】解:A、这10名学生周阅读所用时间从大到小排列,可得4、4、4、5、5、5、5、8

12、、8、12,则这10名学生周阅读所用时间的中位数是:=5;B、这10名学生周阅读所用时间出现次数最多的是5小时,所以众数是5;C、这组数据的平均数是:(43+54+82+12)10=6;D、这组数据的方差是:(4-6)2+(4-6)2+(4-6)2+(5-6)2+(5-6)2+(5-6)2+(5-6)2+(8-6)2+(8-6)2+(12-6)2=6;故选:D【点睛】本题考查了平均数,中位数,众数和方差的意义平均数平均数表示一组数据的平均程度中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动

13、大小的量5C解析:C【分析】先根据平行四边形的性质可得,再根据勾股定理的逆定理可得,然后利用勾股定理可得的长,最后利用三角形的面积公式即可得【详解】解:四边形是平行四边形,是直角三角形,在中,解得,故选:C【点睛】本题考查了平行四边形的性质、勾股定理、勾股定理的逆定理等知识点,熟练掌握勾股定理的逆定理是解题关键6D解析:D【解析】【分析】根据平行四边形的性质以及折叠的性质,即可得到,再根据是等边三角形,即可得到的周长为【详解】由折叠可得,四边形是平行四边形 ,又,由折叠可得,是等边三角形,的周长为,故选:D【点睛】本题考查了平行四边形的性质、轴对称图形性质以及等边三角形的判定,解题时注意折叠是

14、一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等7C解析:C【解析】【分析】由四边形ABCD是平行四边形,得到ABC=ADC=60,BAD=120,根据AE平分BAD,得到BAE=EAD=60推出ABE是等边三角形,由于AB=BC,得到AE=BC,得到ABC是直角三角形,于是得到CAD=30,故正确;由于ACAB,得到SABCD=ABAC,故正确,根据AB=BC,OB=BD,且BDBC,得到ABOB,故错误;根据三角形的中位线定理得到OE=AB,故正确【详解】四边形ABCD是平行四边形,ABC=ADC=60,BAD=120,AE平分BAD,BAE=EAD=

15、60ABE是等边三角形,AE=AB=BE,AB=BC,AE=BC,BAC=90,CAD=30,故正确;ACAB,SABCD=ABAC,故正确,AB=BC,OB=BD,BDBC,ABOB,故错误;CE=BE,CO=OA,OE=AB,故正确故正确,共3个故选C【点睛】本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式,熟练掌握性质定理和判定定理是解题的关键8C解析:C【分析】根据图象可知进水的速度为5(L/min),再根据第10分钟时容器内水量为27.5L可得出水的速度,从而求出第12min时容器内水量,利用待定系数法求出4x12时,y与x之间的函数关系式,

16、再对各个选项逐一判断即可【详解】解:由图象可知,进水的速度为:2045(L/min),故说法正确;出水的速度为:5(27.520)(104)3.75(L/min),第12min时容器内水量为:20(124)(53.75)30(L),故说法正确;1533(min),12(3015)3.7516(min),故当y15时,x3或x16,故说法错误;设4x12时,y与x之间的函数关系式为ykxb,根据题意,得,解得,所以4x12时,yx15,故说法正确所以正确说法的个数是3个故选:C【点睛】此题考查了一次函数的应用,解题时首先正确理解题意,利用数形结合的方法即可解决问题二、填空题9【解析】【分析】根据

17、二次根式有意义的条件可求得x,然后求得y,最后求平方根即可【详解】解:是实数,且满足,并且,解得,此时,其平方根是故答案为:【点睛】本题考查二次根式有意义的条件,求一个数的平方根,二次根式的化简,理解二次根式有意义被开方数非负是解题关键102【解析】【分析】利用菱形的面积等于对角线乘积的一半求解【详解】解:菱形的面积=14=2故答案为2【点睛】本题考查了菱形的性质:熟练掌握菱形的性质(菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角)记住菱形面积=ab(a、b是两条对角线的长度)11A解析:55【解析】【分析】设AC=x,可知AB=10-

18、x,再根据勾股定理即可得出结论【详解】解:设AC=x,AC+AB=10,AB=10-x在RtABC中,ACB=90,AC2+BC2=AB2,即x2+32=(10-x)2解得:x=4.55,即AC=4.55故答案为:4.55【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图领会数形结合的思想的应用12B解析:5【分析】先由勾股定理求出BD,再得出OD,证明EF是AOD的中位线,即可得出结果【详解】四边形ABCD是矩形,BAD=90,OD=BD,AD=BC=8,OD=5cm,点E、F

19、分别是AO、AD的中点,EF是AOD的中位线,EF=OD=2.5cm;故答案为2.5【点睛】本题考查了矩形的性质、勾股定理以及三角形中位线定理;熟练掌握菱形的性质,证明三角形中位线是解决问题的关键13【分析】用待定系数法即可得到答案.【详解】解:把代入得,解得,所以一次函数解析式为故答案为【点睛】本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法.14(不唯一)【分析】先根据平行四边形的判定可得四边形是平行四边形,再根据菱形的判定即可得【详解】解:,四边形是平行四边形,则当时,平行四边形是菱形,故答案为:(不唯一)【点睛】本题考查了平行四边形和菱形的判定,熟练掌握菱形的判定方法是解题关键

20、15(63,64)【分析】由题意易得,然后把点的坐标代入直线求解,进而可得点,.;由此可得规律为,最后问题可求解【详解】解:四边形,是正方形,且正方形的边长为,正方形边长为,解析:(63,64)【分析】由题意易得,然后把点的坐标代入直线求解,进而可得点,.;由此可得规律为,最后问题可求解【详解】解:四边形,是正方形,且正方形的边长为,正方形边长为,点.在直线上,把点的坐标代入得:,解得:,直线,当x=3时,则有,同理可得,.;,;故答案为【点睛】本题主要考查正方形的性质及一次函数的应用,熟练掌握正方形的性质及一次函数的图象与性质是解题的关键16【分析】由题意可得AB=10,根据面积可得CE=4

21、.8,根据勾股定理可求BE=6.4,由折叠可求ECF=45,可得EC=EF=4.8,即可求BF的长,可求面积【详解】解:RtABC解析:【分析】由题意可得AB=10,根据面积可得CE=4.8,根据勾股定理可求BE=6.4,由折叠可求ECF=45,可得EC=EF=4.8,即可求BF的长,可求面积【详解】解:RtABC中,ACB=90,AC=6,BC=8,BA= =10,将边AC沿CE翻折,使点A落在AB上的点D处,AEC=CED,ACE=DCE,AED=180,CED=90,即CEAB,SABC= ABEC=ACBC,EC=4.8,在RtBCE中,BE=6.4,将边BC沿CF翻折,使点B落在CD

22、的延长线上的点B处,BF=BF,BCF=BCF,BCF+BCF+ACE+DCE=ACB=90,ECF=45,又CEAB,EFC=ECF=45,CE=EF=4.8,BF=BE-EF=6.4-4.8=1.6,BFC的面积为:FBEC=,由翻折可知,BFC 的面积=BFC的面积=故答案为【点睛】本题考查了折叠问题,勾股定理,根据折叠的性质求ECF=45是本题的关键三、解答题17(1);(2);(3)【分析】(1)根据二次根式乘法法则计算即可;(2)根据二次根式运算法则进行计算即可;(3)利用完全平方公式和平方差公式计算即可【详解】解:(1)原式,解析:(1);(2);(3)【分析】(1)根据二次根式

23、乘法法则计算即可;(2)根据二次根式运算法则进行计算即可;(3)利用完全平方公式和平方差公式计算即可【详解】解:(1)原式, (2)原式 , (3)原式;【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则和乘法公式进行计算.18B、C两点之间的距离为海里【分析】根据题意可知,然后根据勾股定理计算即可【详解】解:根据题意可知,1小时后,海里,海里,在中,海里,B、C两点之间的距离为海里【点睛】本题考解析:B、C两点之间的距离为海里【分析】根据题意可知,然后根据勾股定理计算即可【详解】解:根据题意可知,1小时后,海里,海里,在中,海里,B、C两点之间的距离为海里【点睛】本题考查了

24、方向角以及勾股定理,读懂题意,得出是关键19(1)3;(2)见解析;C1(2,1),C2(1,2),C3(2,1),C4(1,2)【解析】【分析】(1)直接利用勾股定理求出AB的长度即可;(2)根据三角形ABC的面积画解析:(1)3;(2)见解析;C1(2,1),C2(1,2),C3(2,1),C4(1,2)【解析】【分析】(1)直接利用勾股定理求出AB的长度即可;(2)根据三角形ABC的面积画出对应的三角形即可;根据点C的位置,写出点C的坐标即可.【详解】解:(1)如图所示在RtACB中,P=90,AP=3,BP=3(2)如图所示RtACB中,C=90,AC=3,BC=3C1(2,1),C2

25、(1,2),C3(2,1),C4(1,2)满足条件的三角形如图所示C1(2,1),C2(1,2),C3(2,1),C4(1,2)【点睛】本题主要考查了勾股定理,三角形的面积,点的坐标,解题的关键在于能够熟练掌握相关知识点进行求解.20(1)见解析;(2)25【分析】(1)由题意可证四边形DFBE是平行四边形,且DEAB,可得结论;(2)根据平行四边形的性质求得ADC=130,DE=CD,再利用等腰三角形的性质即可求解析:(1)见解析;(2)25【分析】(1)由题意可证四边形DFBE是平行四边形,且DEAB,可得结论;(2)根据平行四边形的性质求得ADC=130,DE=CD,再利用等腰三角形的性

26、质即可求解【详解】(1)证明:在ABCD中,ADBC,AD=BC,EDBFED=ADAE,BF=BCCF,AE=CF,ED=BF四边形BFDE是平行四边形DFBC,DFB=90,四边形BFDE是矩形;(2)解:在ABCD中,AB=CD,ABC=ADCDE=AB,ABC=130,DE=CD,ADC=130DEC=(180130)=25【点睛】本题考查了矩形的判定,平行四边形的性质,运用等腰三角形的判定和性质解决问题是本题的关键21(1)i,1,;(2)i6;(3)的最小值为25【解析】【分析】(1)根据题目所给条件可得i3=i2i,i4=i2i2计算即可得出答案;(2)根据多项式乘法法则进行计算

27、,及题目所解析:(1)i,1,;(2)i6;(3)的最小值为25【解析】【分析】(1)根据题目所给条件可得i3=i2i,i4=i2i2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所给已知条件即可得出答案;(3)根据题目已知条件,a+bi4+3i,求出a、b,即可得出答案【详解】(1)i3i2i1ii,i4i2i21(1)1,设Si+i2+i3+i2021,iSi2+i3+i2021+i2022,(1i)Sii2022,S,故答案为i,1,;(2)(1+i)(34i)(2+3i)(23i)34i+3i4i2(49i2)3i+449i6;(3)a+bi4+3i,a4,b3,的最小值可

28、以看作点(x,0)到点A(0,4),B(24,3)的最小距离,点A(0,4)关于x轴对称的点为A(0,4),连接AB即为最短距离,AB25,的最小值为25【点睛】此题考查了实数的运算,以及规律型:数字的变化类,弄清题中的新定义是解本题的关键22(1);(2)3种;(3)227元【分析】(1)依据每天生产的时间为300分钟列出函数关系式即可;(2)由种奶茶不少于73杯,种奶茶的杯数为非负数列不等式组求解即可;(3)列出利润与的函数关解析:(1);(2)3种;(3)227元【分析】(1)依据每天生产的时间为300分钟列出函数关系式即可;(2)由种奶茶不少于73杯,种奶茶的杯数为非负数列不等式组求解

29、即可;(3)列出利润与的函数关系式,然后依据一次函数的性质求解即可【详解】(1)每天生产的时间为300分钟,由题意得:,(2)由题意得:解得:为整数,74,75不同的生产方案有3种(3)设每天的利润为元,则即,随的增大而减小当时,取最大值,此时(元)答:每天获得的最大利润为227元【点评】本题主要考查的是一次函数的应用,列出关于的不等式组是解题的关键23(1)见解析;(2)EFG是等腰直角三角形,理由见解析(3)【分析】(1)延长,交于点,先证,得,结合,知,即可得从而得证;(2)延长,交于点,由四边形是“等垂四边形”, 知,从而得,解析:(1)见解析;(2)EFG是等腰直角三角形,理由见解析

30、(3)【分析】(1)延长,交于点,先证,得,结合,知,即可得从而得证;(2)延长,交于点,由四边形是“等垂四边形”, 知,从而得,根据三个中点知,据此得,由可得答案;(3)延长,交于点,分别取,的中点,连接,由及可得答案【详解】解:(1)如图,延长,交于点,四边形与四边形都为正方形,即,又,四边形是“等垂四边形”(2)是等腰直角三角形理由如下:如图,延长,交于点,四边形是“等垂四边形”, ,点,分别是,的中点,是等腰直角三角形(3)延长,交于点,分别取,的中点,连接,则,由(2)可知最小值为,故答案为:【点睛】本题是四边形的综合问题,解题的关键是掌握正方形的性质,全等三角形的判定与性质,三角形

31、中位线定理及等腰直角三角形的性质等知识点24(1);(2);(3)或或【解析】【分析】(1)连接,作,交的延长线于点,可知,再根据,可得,又因为,得到,即可证明,所以可得,再计算的长度即可求解;(2)设,即可表示出、的长度,根据求解析:(1);(2);(3)或或【解析】【分析】(1)连接,作,交的延长线于点,可知,再根据,可得,又因为,得到,即可证明,所以可得,再计算的长度即可求解;(2)设,即可表示出、的长度,根据求出的值,即可得到点的坐标,再设直线的解析式为,将、两点的坐标代入即可;(3)设点坐标为,因为平分,所以,最后分三种情况进行讨论即可【详解】(1),连接,作,交的延长线于点,如图,

32、即,在中, ,又,,,;(2) 设,由(1)可知,与都是直角三角形,且,解得,又,设直线的解析式为,则,解得,直线的解析式为;(3)设点坐标为,平分,当时,则,与重合,;当时,过点作,垂足为,则,又,在中,由勾股定理可求得,在中,在中,解得,;当时,延长交轴于点,且,过点作,垂足为,则,在中,由勾股定理可求得,设直线的解析式为,则,解得,直线解析式为,当时,解得,综上所述,当为等腰三角形时,点坐标为或或【点睛】本题是四边形的综合题,考查了矩形的性质、三角形内角和定理、全等三角形的性质和判定、勾股定理、待定系数法求函数解析式等知识点,解题要注意分类讨论的思想25(1)等腰直角;(2)结论仍成立,

33、见解析;(3)或,.【分析】(1)结论:DMEM,DM=EM只要证明AMHFME,推出MH=ME,AH=EF=EC,推出DH=DE,因为EDH=90解析:(1)等腰直角;(2)结论仍成立,见解析;(3)或,.【分析】(1)结论:DMEM,DM=EM只要证明AMHFME,推出MH=ME,AH=EF=EC,推出DH=DE,因为EDH=90,可得DMEM,DM=ME;(2)结论不变,证明方法类似;(3)分两种情形画出图形,理由勾股定理以及等腰直角三角形的性质解决问题即可;【详解】解:(1) AMN FME ,等腰直角.如图1中,延长EM交AD于H四边形ABCD是正方形,四边形EFGC是正方形,AMH

34、FME,DMEM,DM=ME(2)结论仍成立. 如图,延长EM交DA的延长线于点H,四边形ABCD与四边形CEFG都是正方形,,,ADEF,.,,AMFFME(ASA), ,,.在DHE中,,,DMEM.(3)当E点在CD边上,如图1所示,由(1)的结论可得三角形DME为等腰直角三角形,则DM的长为,此时,所以;当E点在CD的延长线上时,如图2所示,由(2)的结论可得三角形DME为等腰直角三角形,则DM的长为,此时 ,所以 ;当E点在BC上是,如图三所示,同(1)、(2)理可得到三角形DME为等腰直角三角形,证明如下:四边形ABCD与四边形CEFG都是正方形, 且点E在BC上AB/EF,M为A

35、F中点,AM=MF在三角形AHM与三角形EFM中: ,AMHFME(ASA), ,,.在三角形AHD与三角形DCE中: ,AHDDCE(SAS),ADC=ADH+HDC=90,HDE=CDE+HDC=90,在DHE中,,三角形DME为等腰直角三角形,则DM的长为,此时在直角三角形DCE中 ,所以 【点睛】本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质,灵活运用相关的定理、正确作出辅助线是解题的关键26(1)4;2,3,10;(2);(3)36【分析】(1)由三角形的中位线定理可得DEBC,AEEC,ADBD,可求SPDESBDE1,即可求解;由三角形的中位线定理可

36、得DE解析:(1)4;2,3,10;(2);(3)36【分析】(1)由三角形的中位线定理可得DEBC,AEEC,ADBD,可求SPDESBDE1,即可求解;由三角形的中位线定理可得DEBC,AEEC,ADBD,可得SPBDSAPD2,SAPESPEC3,即可求解;(2)连接AP,由三角形的中位线定理可得DEBC,AEEC,ADBD,可得SPBDSAPD4,SAPESPEC5,可求SADE,即可求解;(3)先证NFK是等边三角形,可得NFNKNKFGKJ,可得SPGFSPFN7,SPKJSPKN8,即可求解【详解】解:(1)如图2,连接BE,DE是ABC的中位线,DEBC,AEEC,ADBD,S

37、PDESBDE1,SABE2,SABC4,故答案为:4;DE是ABC的中位线,DEBC,AEEC,ADBD,SPBDSAPD2,SAPESPEC3,SABC10;故答案为:2,3,10;(2)如图3,连接AP,DE是ABC的中位线,DEBC,AEEC,ADBD,SABC4SADE,SPBDSAPD5,SAPESPEC5,SADESAPD+SAPESPDE4,SABC4SADE16;(3)如图4,延长GF,JK交于点N,连接GJ,连接PN,六边形FGHIJK是正六边形,FGFKKJ,GFKJKF120,S六边形FGHIJK2S四边形FGJK,NFKNKF60,NFK是等边三角形,NFNKFKFGKJ,SPGFSPFN7,SPKJSPKN8,FK是NGJ的中位线,SNFKSPFN+SPKNSPFK6,FK是NGJ的中位线,SNGJ4SNFK24;S四边形FGJK24618,S六边形FGHIJK36【点睛】本题是四边形综合题,考查了等边三角形的判定和性质,三角形的中位线定理,正六边形的性质等知识,熟练运用三角形中位线定理是解题的关键

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服