1、八年级期末试卷测试卷附答案一、选择题1函数中,自变量x的取值范围是()Ax0Bx0且x1Cx1D0x12以下列各组线段为边作三角形,不能作出直角三角形的是( )A1,2,B6,8,10C3,7,8D0.3,0.4,0.53如图,四边形ABCD中,对角线AC、BD交于点O,下列条件能证明四边形ABCD是平行四边形的有()ABDC,ADBC;ABDC,ADBC;AOCO,BODO;ABDC,ADBC;ABDC,ABCD;BADBCD,ABCADCA3个B4个C5个D6个4每年的4月23日为“世界读书日”,某学校为了鼓励学生多读书,开展了“书香校园”的活动如图是该校某班班长统计的全班50名学生一学期
2、课外图书的阅读量(单位本),则这50名学生图书阅读数量的中位数和平均数分别为( )A18,12B12,12C15,14.8D15,14.55如图,正方形ABCD的边长为4,点M在AB上,且AM1,N是BD上一动点,则AN+MN的最小值为( )A4BC5D46如图,将矩形ABCD沿对角线BD折叠,使点C落在F处,BF交AD于点E若BDC62,则DEF的度数为( )A31B28C62D567如图,在中,对角线,相交于点,点是的中点,若,则的长为( )A16B18C20D228如图,在平面直角坐标系中,矩形的顶点,点与坐标原点重合,动点从点出发,以每秒2个单位的速度沿的路线向终点运动,连接、,设点运
3、动的时间为秒,的面积为,下列图像能表示与之间函数关系的是( ) A B C D 二、填空题9当代数式有意义时,x应满足的条件_10若菱形的两条对角线的长分别为6和10,则菱形的面积为_11如图,一名滑雪运动员沿着坡比为的滑道,从A滑行至B,已知米,则这名滑雪运动员的高度下降了_米12如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是40厘米,矩形的周长是22厘米,则对角线AC的长为 _厘米13已知A(2,2),B(2,3),若要在x轴上找一点P,使AP+BP最短,此时点P的坐标为_14如图,在矩形ABCD中,对角线AC,BD相交于点O,若AOD=120, AB=2,则
4、BC的长为_15将正方形,按如图所示方式放置,点,和点,分别在直线和轴上,则点的坐标是_,的纵坐标是_16如图正方形 ABCD 中,E 是 BC 边的中点,将ABE 沿 AE 对折至AFE,延长 EF 交 CD 于 G,接 CF,AG下列结论: AEFC; EAG = 45,且BE + DG = EG ; ; AD = 3DG ,正确是_ (填序号)三、解答题17计算(1) (2) (3) (4)18学校需要测量升旗杆的高度同学们发现系在旗杆顶端的绳子垂到了地面,并多出了段,但这条绳子的长度未知经测量,绳子多出的部分长度为2m,将绳子沿地面拉直,绳子底端距离旗杆底端6m(如图所示),求旗杆的高
5、度19如图,每个小正方形的边长都是1,ABC的三个顶点分别在正方形网格的格点上(1)求AB,BC的长;(2)判断ABC的形状,并说明理由20在ABC中,ACB90,BAC=30,D为AB的中点,四边形BCED为平行四边形,DE,AC相交于F.连接DC,AE.(1)试确定四边形ADCE的形状,并说明理由(2)若AB16,AC12,求四边形ADCE的面积(3)当ABC满足什么条件时,四边形ADCE为正方形?请给予证明21先阅读下列解答过程,然后再解答:形如的化简,只要我们找到两个正数,使,使得,那么便有:例如:化简解:首先把化为,这里,由于,即:,所以。问题: 填空:,; 化简:(请写出计算过程)
6、22某超市以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0x20)之间满足一次函数关系,其图象如图所示(1)求y与x之间的函数关系式;(2)当每千克干果降价3元时,超市获利多少元?23问题发现:(1)如图1,点A为线段BC外一动点,且BCa,ABb填空:当点A位于CB延长线上时,线段AC的长可取得最大值,则最大值为 (用含a,b的式子表示);尝试应用:(2)如图2所示,ABC和ADE均为等腰直角三角形,BACDAE90,M、N分别为AB、AD的中点,连接MN、CEAD5,AC3请写出MN与C
7、E的数量关系,并说明理由直接写出MN的最大值(3)如图3所示,ABC为等边三角形,DA6,DB10,ADB60,M、N分别为BC、BD的中点,求MN长(4)若在第(3)中将“ADB60”这个条件删除,其他条件不变,请直接写出MN的取值范围24已知:在平面直角坐标系中,点为坐标原点,直线交轴于点,交轴于点(1)如图1,求点的坐标;(2)如图2,点为线段上一点,点为轴负半轴上一点,连接,且,设点的横坐标为,的长为,求与之间的函数解析式(不要求写出自变量的取值范围);(3)如图3,在(2)的条件下,过点作的垂线,分别交轴,于点,过点作于点,连接,若平分的周长,求的值25如图,已知正方形ABCD的边长
8、为3,点Q是AD边上的一个动点,点A关于直线BQ的对称点是点P,连接QP、DP、CP、BP,设AQ=x(1)BPDP的最小值是_,此时x的值是_;(2)如图,若QP的延长线交CD边于点M,并且CPD=90求证:点M是CD的中点;求x的值(3)若点Q是射线AD上的一个动点,请直接写出当CDP为等腰三角形时x的值【参考答案】一、选择题1B解析:B【分析】根据分式和二次根式有意义的条件进行计算即可【详解】解:由x0且x-10得出x0且x1,x的取值范围是x0且x1,故选:B【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键2C解析:C【分析】先求出两小边的平方和,
9、再求出最大边的平方,看看是否相等即可【详解】解:A、,以1,2,为边的三角形是直角三角形,故本选项不符合题意;B、62+82=36+64=100=102,以6,8,10为边的三角形是直角三角形,故本选项不符合题意;C、32+72=9+49=5882,以3,7,8为边的三角形不是直角三角形,故本选项符合题意;D、0.32+0.42=0.09+0,16=0.25=0.52,以0.3,0.4,0.5为边的三角形是直角三角形,故本选项不符合题意;故选:C【点评】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键,注意:勾股定理的逆定理是:如果一个三角形的两边a、b的平方和等于第三边
10、c的平方,那么这个三角形是直角三角形3C解析:C【解析】【分析】由平行四边形的判定方法分别对各个条件进行判断即可【详解】解:ABDC,ADBC,四边形ABCD是平行四边形;ABDC,ADBC,四边形ABCD是平行四边形;AOCO,BODO,四边形ABCD是平行四边形;由ABDC,ADBC,不能判定四边形ABCD是平行四边形;ABDC,ABCD,四边形ABCD是平行四边形;BADBCD,ABCADC,四边形ABCD是平行四边形;能证明四边形ABCD是平行四边形的有5个,故选:C【点睛】此题考查的是平行线的判定定理,掌握平行线的判定定理是解题的关键4C解析:C【解析】【分析】根据中位数和平均数的定
11、义求解即可【详解】解:由折线统计图知,第25、26个数据分别为12、18,这50名学生图书阅读数量的中位数为 (本),平均数为(本),故选:C【点睛】本题主要考查中位数和平均数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数平均数是指在一组数据中所有数据之和再除以数据的个数它是反映数据集中趋势的一项指标5C解析:C【分析】连接AC,则直线AC即为BD的垂直平分线,点A与点C关于直线BD对称,连CM交BD于点N,则此时AN+MN的值最小,连接AN,根据垂直平分线的性质
12、可得AN=CN,从而得出AN+MN=CN+MN=CM,再根据勾股定理得出CM的长即可解决问题【详解】解:在正方形ABCD中连接AC,则点A与点C是关于直线BD为对称轴的对称点,连接MC交BD于点N,则此时AN+MN的值最小,连接AN,直线AC即为BD的垂直平分线,AN=NCAN+MN=CN+MN=CM,四边形ABCD为正方形,AM=1BC=4,BM=4-1=3,CBM=90,AN+MN的最小值是5故选:C【点睛】本题考查了轴对称-最短路线问题,正方形的性质,勾股定理等知识点,此题的难点在于利用轴对称的方法确定满足条件的点N的位置6D解析:D【解析】【分析】先利用互余计算出BDE28,再根据平行
13、线的性质得CBDBDE28,接着根据折叠的性质得FBDCBD28,然后利用三角形外角性质计算DEF的度数,于是得到结论【详解】解:四边形ABCD为矩形,ADBC,ADC90,ADBC,CBDBDE28,矩形ABCD沿对角线BD折叠,FBDCBD28,DEFFBD+BDE28+2856故选:D【点睛】本题考查了矩形的性质,平行线和折叠的性质,综合运用以上性质是解题的关键7A解析:A【解析】【分析】根据平行四边形的性质可得OB=OD,根据点 E 是 BC 的中点可得OE为BCD的中位线,进而可得BC长【详解】解:四边形ABCD是平行四边形,OB=OD,AB=CD,E是BC的中点,OE是BCD的中位
14、线,CD=2EO,EO=8,CD=2EO=16,AB=CD=16,故选:A【点睛】此题主要考查了平行四边形的性质,以及三角形中位线的性质,掌握平行四边形的性质,三角形中位线的性质是解题关键8B解析:B【分析】先根据矩形的性质得到OA=BC=6,OC=AB=4,再分三种情况:点P在OA、AB、BC边上时,分别求出函数解析式,即可得到图象.【详解】矩形的顶点,,OA=BC=6,OC=AB=4,当点P在OA边上即0t3时, 当点P在AB边上即3t5时, 当点P在BC边上即5t8时,故选:B .【点睛】此题考查函数图象,正确理解题意分段求出函数解析式是解题的关键.二、填空题9x4且x1【解析】【分析】
15、根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案【详解】解:代数式有意义,4x0,x210,解得,x4且x1,故答案为:x4且x1【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键1030【解析】【分析】因为菱形的对角线互相垂直,互相垂直的四边形的面积等于对角线乘积的一半【详解】解:菱形的面积为:故答案为:30【点睛】本题考查菱形的性质,关键知道菱形的对角线互相垂直,然后根据面积等于对角线乘积的一半求出结果11A解析:150【解析】【分析】根据坡比的定义,得到AC和BC的关系,利用勾股定理求出AB和AC的关系,从而求解【详解】
16、如图,在中,由题意可知,米,故答案为:150【点睛】本题考查了坡度坡比的定义,利用勾股定理解直角三角形,解题的关键是掌握坡比的定义12A解析:5【分析】根据矩形性质得出OA=OB=OC=OD,AB=CD,AD=BC,求出8OA+2AB+2BC=40厘米和2AB+2BC=22厘米,求出OA,即可求出答案【详解】解:四边形ABCD是矩形,AB=CD,AD=BC,AC=BD,AO=OC,OD=OB,AO=OC=OD=OB,矩形ABCD被两条对角线分成四个小三角形的周长的和是40厘米,OA+OD+AD+OD+OC+CD+OC+OB+BC+OA+OB+AB=40厘米,即8OA+2AB+2BC=40厘米,
17、矩形ABCD的周长是22厘米,2AB+2BC=22厘米,8OA=18厘米,OA=2.25厘米,即AC=BD=2OA=4.5厘米故答案为:4.5【点睛】本题考查了矩形的性质的应用,注意:矩形的对边相等,矩形的对角线互相平分且相等13A解析:(-0.4,0)【分析】点A(-2,2)关于x轴对称的点A(-2,-2),求得直线AB的解析式,令y=0可求点P的横坐标【详解】解:点A(-2,2)关于x轴对称的点A(-2,-2),设直线AB的解析式为y=kx+b,把A(-2,-2),B(2,3)代入,可得 ,解得 ,直线AB的解析式为y=x+,令y=0,则0=x+,解得x=-0.4,点P的坐标为(-0.4,
18、0),故答案为(-0.4,0)【点睛】本题综合考查待定系数法求一次函数解析式,一次函数图象上点的坐标特征,两点之间线段最短等知识点凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点14【分析】由条件可求得为等边三角形,则可求得的长,在中,由勾股定理可求得的长.【详解】,四边形为矩形,为等边三角形,在中,由勾股定理可求得.故答案为:.【点睛】本题主要考查矩形的性质,掌握矩形的对角线相等且互相平分是解题的关键.15【分析】先根据解析式求得的坐标,再根据正方形的性质求得的坐标,以相同的方法求得;,继而得到坐标的规律,据此求得的纵坐标【详解】当时,四边形是正方形当时,四
19、边形是解析: 【分析】先根据解析式求得的坐标,再根据正方形的性质求得的坐标,以相同的方法求得;,继而得到坐标的规律,据此求得的纵坐标【详解】当时,四边形是正方形当时,四边形是正方形,同理可得:;点的坐标为,故答案为:【点睛】本题考查了一次函数的性质,正方形性质,找到点坐标的规律是解题的关键16【分析】根据折叠得ABEAFE,证明EFC是等腰三角形,得到EFC=ECF,根据BEF=EFC+FEC,得出BEA=AEF=EFC=ECF,即可证明AEFC,解析:【分析】根据折叠得ABEAFE,证明EFC是等腰三角形,得到EFC=ECF,根据BEF=EFC+FEC,得出BEA=AEF=EFC=ECF,即
20、可证明AEFC,故正确;根据四边形ABCD是正方形,且ABEAFE,证明RtAFGRtADG,得出FAG=GAD,根据BAF+FAD=90,推出EAF+FAG=45,可得EAG=45,根据全等得:BE=FE,DG=FG,即可得BE+DG=EF+GF=EG,故正确;先求出SECG,根据EF:FG=:=3:2,得出SEFC:SFCG=3:2,即SEFC=,再根据SABCD=a2,得出SCEF:SABCD=:,即SCEF=SABCD,故错误;设正方形的边长为a,根据勾股定理得AE=,设DG=x,则CG=a-x,FG=x,EG=+x,再根据勾股定理求出x,即可得出结论,故正确【详解】解:由折叠可得AB
21、EAFE,BEA=AEF,BE=EF,E是BC中点,BE=CE=EF,EFC是等腰三角形,EFC=ECF,BEF=EFC+FEC,BEA=AEF=EFC=ECF,AEFC,故正确;四边形ABCD是正方形,且ABEAFE,AB=AF=AD,B=D=AFG,AFG和ADG是直角三角形,在RtAFG和RtADG中,RtAFGRtADG(HL),FAG=GAD,又BAF+FAD=90,2EAF+2FAG=90,即EAF+FAG=45,EAG=45,由全等得:BE=FE,DG=FG,BE+DG=EF+GF=EG,故正确;对于RtECG,SECG=ECCG=,EF:FG=:=3:2,则SEFC:SFCG=
22、3:2,即SEFC=,又SABCD=a2,则SCEF:SABCD=:,即SCEF=SABCD,故错误;设正方形的边长为a,AB=AD=AF=a,BE=EF=EC,由勾股定理得AE=,设DG=x,则CG=a-x,FG=x,EG=+x,EG2=EC2+CG2,即(+x)2=()2+(a-x)2,解得x=,CG=,即AD=3DG成立,故正确【点睛】本题考查了正方形的折叠问题,等腰三角形的判定和性质,平行线的判定,全等三角形的判定和性质,勾股定理,掌握这些知识点灵活运用是解题关键三、解答题17(1)1;(2);(3)0;(4)【分析】(1)先运用分母有理化化简,然后再计算即可;(2)先运用二次根式的性
23、质化简,然后再计算即可;(3)先运用平方差公式计算,然后再化简即可;(4)先解析:(1)1;(2);(3)0;(4)【分析】(1)先运用分母有理化化简,然后再计算即可;(2)先运用二次根式的性质化简,然后再计算即可;(3)先运用平方差公式计算,然后再化简即可;(4)先运用零次幂、二次根式的性质、完全平方公式化简,然后再计算即可【详解】解:(1) = = =4-3=1;(2) =;(3) =5-7+2=0; (4)=【点睛】本题主要考查了二次根式的运算,掌握分母有理化、二次根式的性质成为解答本题的关键188m【分析】由题可知,旗杆,绳子与地面构成直角三角形,根据题中数据,用勾股定理即可解答【详解
24、】解:设旗杆的长度为xm,则绳子的长度为:(x+2)m,在RtABC中,由勾股定理得:x2+解析:8m【分析】由题可知,旗杆,绳子与地面构成直角三角形,根据题中数据,用勾股定理即可解答【详解】解:设旗杆的长度为xm,则绳子的长度为:(x+2)m,在RtABC中,由勾股定理得:x2+62=(x+2)2,解得:x=8,答:旗杆的高度为8m【点睛】本题考查的是勾股定理的应用,根据题意得出直角三角形是解答此题的关键19(1)AB2,BC,(2)ABC是直角三角形,见解析【解析】【分析】(1)先利用勾股定理分别计算两边的长即可;(2)利用勾股定理的逆定理得到三角形为直角三角形【详解】解:(1)解析:(1
25、)AB2,BC,(2)ABC是直角三角形,见解析【解析】【分析】(1)先利用勾股定理分别计算两边的长即可;(2)利用勾股定理的逆定理得到三角形为直角三角形【详解】解:(1)AB,BC,(2)AC5,AB2BC2AC2,ABC是直角三角形【点睛】此题考查了勾股定理和勾股定理的逆定理,熟练掌握勾股定理是解本题的关键20(1)四边形ADCE是菱形,见解析;(2);(3)当ACBC时,四边形ADCE为正方形,见解析【分析】(1)先证明四边形ADCE为平行四边形,进而证明ACDE,即可证明四边形ADCE为菱形解析:(1)四边形ADCE是菱形,见解析;(2);(3)当ACBC时,四边形ADCE为正方形,见
26、解析【分析】(1)先证明四边形ADCE为平行四边形,进而证明ACDE,即可证明四边形ADCE为菱形;(2)勾股定理求得BC4,根据已知条件可得BCDE,进而根据菱形的面积等于对角线乘积的一半进行求解即可;(3)根据ADC90,D为AB的中点,即可得ACBC【详解】解:(1)四边形ADCE是菱形理由:四边形BCED为平行四边形,CE/BD,CEBD,BC/DE,D为AB的中点,ADBDCEAD又CE/AD,四边形ADCE为平行四边形BC/DF,AFDACB90,即ACDE,四边形ADCE为菱形(2)在RtABC中,AB16,AC12,BC4四边形BCED为平行四边形,BCDE,DE4四边形ADC
27、E的面积ACDE (3)当ACBC时,四边形ADCE为正方形证明:ACBC,D为AB的中点,CDAB,即ADC90,四边形ADCE为矩形又BCED为平行四边形,BC=DEDE=AC四边形ADCE为正方形【点睛】本题考查了平行四边形的性质,菱形的判定,正方形的性质与判定,勾股定理,掌握以上四边形的性质与判定是解题的关键21(1),;(2).【解析】【分析】由条件对式子进行变形,利用完全平方公式对的形式化简后就可以得出结论了【详解】解:(1);(2)【点睛】本题考查了二次根式的化简解析:(1),;(2).【解析】【分析】由条件对式子进行变形,利用完全平方公式对的形式化简后就可以得出结论了【详解】解
28、:(1);(2)【点睛】本题考查了二次根式的化简求值,涉及了配方法的运用和完全平方根式的运用及二次根式性质的运用22(1)y=10x+100(0x20);(2)当每千克干果降价3元时,超市获利2210元【分析】(1)由待定系数法即可得到函数的解析式;(2)根据(1)的解析式将x=3代入求出销售量,再根据解析:(1)y=10x+100(0x20);(2)当每千克干果降价3元时,超市获利2210元【分析】(1)由待定系数法即可得到函数的解析式;(2)根据(1)的解析式将x=3代入求出销售量,再根据每千克利润销售量=总利润列式求解即可【详解】解:(1)设y与x之间的函数关系式为:y=kx+b,把(2
29、,120)和(4,140)代入得,解得:,y与x之间的函数关系式为:y=10x+100(0x20);(2)根据题意得,销售量y=103+100=130,(60-3-40)130=2210(元),答:当每千克干果降价3元时,超市获利2210元【点睛】本题考查的是一次函数的应用,解题的关键是利用待定系数法求出y与x之间的函数关系式,此类题目主要考查学生分析、解决实际问题能力,又能较好的考查学生“用数学”的意识23(1)a+b;(2)EC2MN,见解析;MN的最大值为4;(3)MN7;(4)2MN8【分析】(1)当点在的延长线上时,的值最大(2)结论:连接,再利用全等三角形的性质证明,解析:(1)a
30、+b;(2)EC2MN,见解析;MN的最大值为4;(3)MN7;(4)2MN8【分析】(1)当点在的延长线上时,的值最大(2)结论:连接,再利用全等三角形的性质证明,再利用三角形的中位线定理,可得结论根据,求出,可得结论(3)如图3中,以为边向左作等边,连接,过点作交的延长线于证明,求出可得结论(4)由(3)可知,求出的取值范围,可得结论【详解】解:(1),的最大值为,故答案为:(2)结论:理由:连接,在和中,的最大值为4(3)如图3中,以为边向左作等边,连接,过点作交的延长线于,都是等边三角形,在和中, ,(4)由(3)可知,【点睛】本题属于三角形综合题,考查了等边三角形的性质,等腰直角三角
31、形的性质,全等三角形的判定和性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题24(1)点的坐标为;(2);(3)12【解析】【分析】(1)根据点A的坐标求出函数解析式,即可求解;(2)过点作轴于点,可用t表示出点P的坐标,根据(1)可知,可知,设,根据,可得:,从而,即解析:(1)点的坐标为;(2);(3)12【解析】【分析】(1)根据点A的坐标求出函数解析式,即可求解;(2)过点作轴于点,可用t表示出点P的坐标,根据(1)可知,可知,设,根据,可得:,从而,即可解答;(3)作轴于点,延长至点,使,连接,过点作的垂线交的延长线于点由(2)可得:,可证,进而可
32、证,可得,列出关于t的等式即可求解【详解】解:(1)直线经过点, 当时,点的坐标为;(2)如图1,过点作轴于点,图1点在直线上,点的横坐标为,点的坐标为,设,又,;(3)作轴于点,延长至点,使,连接,过点作的垂线交的延长线于点图2,轴,平分的周长,【点睛】本题是一次函数与几何综合题,在一次函数的背景下考查全等三角形的性质与判定等知识;构造合适的辅助线是解决本题的关键25(1);(2)见详解;x=1;(3)CDP为等腰三角形时x的值为:或或【分析】(1)BP+DP为点B到D两段折线的和由两点间线段最短可知,连接DB,若P点落在BD上,此时和最短,且为解析:(1);(2)见详解;x=1;(3)CD
33、P为等腰三角形时x的值为:或或【分析】(1)BP+DP为点B到D两段折线的和由两点间线段最短可知,连接DB,若P点落在BD上,此时和最短,且为考虑动点运动,这种情形是存在的,由AQ=x,则QD=3-x,PQ=x又PDQ=45,所以QDPQ,即3-x=x求解可得答案;(2)由已知条件对称分析,AB=BP=BC,则BCP=BPC,由BPM=BCM=90,可得MPC=MCP那么若有MP=MD,则结论可证再分析新条件CPD=90,易得结论求x的值,通常都是考虑勾股定理,选择直角三角形QDM,发现QM,DM,QD都可用x来表示,进而易得方程,求解即可(3)若CDP为等腰三角形,则边CD比为改等腰三角形的
34、一腰或者底边又P点为A点关于QB的对称点,则AB=PB,以点B为圆心,以AB的长为半径画弧,则P点只能在弧AB上若CD为腰,以点C为圆心,以CD的长为半径画弧,两弧交点即为使得CDP为等腰三角形(CD为腰)的P点若CD为底边,则作CD的垂直平分线,其与弧AC的交点即为使得CDP为等腰三角形(CD为底)的P点则如图所示共有三个P点,那么也共有3个Q点作辅助线,利用直角三角形性质求之即可【详解】解:(1)连接DB,若P点落在BD上,此时BP+DP最短,如图:由题意,正方形ABCD的边长为3,BPDP的最小值是;由折叠的性质,则,PDQ=45,QPD=90,QPD是等腰直角三角形,解得:;故答案为:
35、;(2)如图所示:证明:在正方形ABCD中,有AB=BC,A=BCD=90P点为A点关于BQ的对称点,AB=PB,A=QPB=90,PB=BC,BPM=BCM,BPC=BCP,MPC=MPB-CPB=MCB-PCB=MCP,MP=MC在RtPDC中,PDM=90-PCM,DPM=90-MPC,PDM=DPM,MP=MD,CM=MP=MD,即M为CD的中点解:AQ=x,AD=3,QD=3-x,PQ=x,CD=3在RtDPC中,M为CD的中点,DM=QM=CM=,QM=PQ+PM=x+,(x+)2(3x)2+()2,解得:x=1(3)如图,以点B为圆心,以AB的长为半径画弧,以点C为圆心,以CD的
36、长为半径画弧,两弧分别交于P1,P3此时CDP1,CDP3都为以CD为腰的等腰三角形作CD的垂直平分线交弧AC于点P2,此时CDP2以CD为底的等腰三角形;讨论P1,如图作辅助线,连接BP1、CP1,作QP1BP1交AD于Q,过点P1,作EFAD于E,交BC于FBCP1为等边三角形,正方形ABCD边长为3,P1F,P1E在四边形ABP1Q中,ABP1=30,AQP1=150,QEP1为含30的直角三角形,QE=EP1AE=,x=AQ=AE-QE=讨论P2,如图作辅助线,连接BP2,AP2,过点P2作QGBP2,交AD于Q,连接BQ,过点P2作EFCD于E,交AB于FEF垂直平分CD,EF垂直平
37、分AB,AP2=BP2AB=BP2,ABP2为等边三角形在四边形ABP2Q中,BAD=BP2Q=90,ABP2=60,AQG=120EP2G=DQG=180-120=60,P2E,EG=,DG=DE+GE=,QD=,x=AQ=3-QD=对P3,如图作辅助线,连接BP1,CP1,BP3,CP3,过点P3作BP3QP3,交AD的延长线于Q,连接BQ,过点P1,作EFAD于E,此时P3在EF上,不妨记P3与F重合BCP1为等边三角形,BCP3为等边三角形,BC=3,P1P3,P1E,EF在四边形ABP3Q中ABF=ABC+CBP3=150,EQF=30,EQ=EF=AE=,x=AQ=AE+QE=+综合上述,CDP为等腰三角形时x的值为:或或【点睛】本题第一问非常基础,难度较低第二问因为动点的原因,思路不易找到,这里就需要做题时充分分析已知条件,尤其是新给出的条件其中求边长是勾股定理的重要应用,是很重要的考点第三问是一个难度非常高的题目,可以利用尺规作图的思想将满足要求的点P找全另外求解各个Q点也是考察三角函数及勾股定理的综合应用,有着极高的难度