1、2022-2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1下列一元二次方程中,两实数根之和为3的是()ABCD2在一个不透明的盒子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大
2、量重复摸球试验后,发现摸到红球的频率稳定于0.3,由此可估计盒中红球的个数约为()A3B6C7D143九章算术中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有人,买鸡的钱数为,依题意可列方程组为( )ABCD4四条线段成比例,其中3,则等于( )A2BCD85如图,点ABC在D上,ABC=70,则ADC的度数为()A110B140C35D1306完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A6(mn)B3(m+n)
3、C4nD4m7在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”,“兵”所在位置的格点构成的三角形相似( )A处B处C处D处8坡比常用来反映斜坡的倾斜程度如图所示,斜坡AB坡比为( ).A:4B:1C1:3D3:19关于x的一元二次方程有两个实数根,则k的取值范围在数轴上可以表示为( )ABCD10一元二次方程mx2+mx0有两个相等实数根,则m的值为()A0B0或2C2D2二、填空题(每小题3分,共24分)11如图,已知中,D是线段AC上一点(不与A,C重合),连接BD,将沿
4、AB翻折,使点D落在点E处,延长BD与EA的延长线交于点F,若是直角三角形,则AF的长为_.12已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_厘米13若函数y(m+1)x2x+m(m+1)的图象经过原点,则m的值为_14平面直角坐标系中,点A,B的坐标分别是A(2,4),B(3,0),在第一象限内以原点O为位似中心,把OAB缩小为原来的,则点A的对应点A 的坐标为_15将抛物线向上平移一个单位后,又沿x轴折叠,得新的抛物线,那么新的抛物线的表达式是_16已知二次函数y=-x2+2x+5,当x_时,y随x的增大而增大17如图,已知AOB是直角三角形,AOB90,B=30,点A在
5、反比例函数y=的图象上,若点B在反比例函数y=的图象上,则的k值为_18一个小球在如图所示的方格地板上自由滚动,并随机停留在某块地板上,每块地板大小、质地完全相同,那么该小球停留在黑色区域的概率是_ 三、解答题(共66分)19(10分)海岛算经第一个问题的大意是:如图,要测量海岛上一座山峰的高度,立两根高丈的标杆和,两竿之间的距步,成一线,从处退行步到,人的眼睛贴着地面观察点,三点成一线;从处退行步到,从观察点,三点也成一-线试计算山峰的高度及的长 (这里步尺,丈尺,结果用丈表示) 怎样利用相似三角形求得线段及的长呢?请你试一试!20(6分)如图,在中,于点,于点. (1)求证:;(2)若,求
6、四边形的面积.21(6分)已知二次函数的图象经过三点(1,0),(-6,0)(0,-3).(1)求该二次函数的解析式.(2)若反比例函数的图象与二次函数的图象在第一象限内交于点A(),落在两个相邻的正整数之间,请求出这两个相邻的正整数.(3)若反比例函数的图象与二次函数的图象在第一象限内的交点为B,点B的横坐标为m,且满足3m4,求实数k的取值范围.22(8分)在平面直角坐标系中,已知,.(1)如图1,求的值.(2)把绕着点顺时针旋转,点、旋转后对应的点分别为、.当恰好落在的延长线上时,如图2,求出点、的坐标.若点是的中点,点是线段上的动点,如图3,在旋转过程中,请直接写出线段长的取值范围.2
7、3(8分)我国古代数学著作九章算术中记载了一个问题:“今有邑方不知大小,各开中门,出北门三十步有木,出西门七百五十步见木,问:邑方几何?” .其大意是:如图,一座正方形城池,A为北门中点,从点A往正北方向走30步到B出有一树木,C为西门中点,从点C往正西方向走750步到D处正好看到B处的树木,求正方形城池的边长.24(8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2, 求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花
8、园内(含边界,不考虑树的粗细),求花园面积S的最大值.25(10分)学校实施新课程改革以来,学生的学习能力有了很大提高王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2)请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了 名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率26(10分)如图,某实践小组为测量某大学
9、的旗杆和教学楼的高,先在处用高米的测角仪测得旗杆顶端的仰角,此时教学楼顶端恰好在视线上,再向前走米到达处,又测得教学楼顶端的仰角,点三点在同一水平线上,(参考数据:)(1)计算旗杆的高;(2)计算教学楼的高参考答案一、选择题(每小题3分,共30分)1、D【分析】根据根与系数的关系,要使一元二次方程中,两实数根之和为3,必有0且,分别计算即可判断.【详解】解:A、a=1,b=3,c=-3,;B、a=2,b=-3,c=-3,;C、a=1,b=-3,c=3,原方程无解;D、a=1,b=-3,c=-3,.故选:D.【点睛】本题考查根与系数关系,根的判别式.在本题中一定要注意需先用根的判别式判定根的情况
10、,若方程有根方可用根与系数关系.2、B【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,【详解】解:根据题意列出方程,解得:x=6,故选B.考点:利用频率估计概率3、D【分析】一方面买鸡的钱数=8人出的总钱数3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有人,买鸡的钱数为,根据题意,得:.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.4、A【分析】四条线段a,b,c,d成比例,则 = ,代入即可求得b的值【详解】解:四条线段a,b,c,d成比例, =,b= =
11、=2(cm)故选A【点睛】本题考查成比例线段,解题关键是正确理解四条线段a,b,c,d成比例的定义5、B【解析】根据圆周角定理可得ADC=2ABC=140,故选B.6、D【详解】解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m故选D7、B【分析】确定“帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长,然后利用相似三角形的对应边的比相等确定第三个顶点的位置即可【详解】帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长分别为;“车”、
12、“炮”之间的距离为1,“炮”之间的距离为,“车”之间的距离为2 ,马应该落在的位置,故选B【点睛】本题考查了相似三角形的知识,解题的关键是利用勾股定理求得三角形的各边的长,难度不大8、A【分析】利用勾股定理可求出AC的长,根据坡比的定义即可得答案.【详解】AB=3,BC=1,ACB=90,AC=,斜坡AB坡比为BC:AC=1:=:4,故选:A.【点睛】本题考查坡比的定义,坡比是坡面的垂直高度与水平宽度的比;熟练掌握坡比的定义是解题关键.9、B【分析】利用根的判别式和题意得到,求出不等式的解集,最后在数轴上表示出来,即可得出选项【详解】解:关于x的方程有两个实数根,解得:,在数轴上表示为:,故选
13、:B【点睛】本题考查了在数轴上表示不等式的解集,根的判别式的应用,注意:一元二次方程(为常数)的根的判别式为当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根特别注意:当时,方程有两个实数根,本题主要应用此知识点来解决10、C【解析】由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值【详解】一元二次方程mx1+mx0有两个相等实数根,m14m()m1+1m0,解得:m0或m1,经检验m0不合题意,则m1故选C【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的
14、实数根;根的判别式的值小于0,方程没有实数根二、填空题(每小题3分,共24分)11、或【分析】分别讨论E=90,EBF=90两种情况:当E=90时,由折叠性质和等腰三角形的性质可推出BDC为等腰直角三角形,再求出ABD=ABE=22.5,进而得到F=45,推出ADF为等腰直角三角形即可求出斜边AF的长度;当EBF=90时,先证ABDACB,利用对应边成比例求出AD和CD的长,再证ADFCDB,利用对应边成比例求出AF.【详解】当E=90时,由折叠性质可知ADB=E=90,如图所示,在ABC中,CA=CB=4,C=45ABC=BAC=67.5BDC=90,C=45BCD为等腰直角三角形,CD=B
15、C=,DBC=45EBA=DBA=ABC-DBC=67.5-45=22.5EBF=45F=90-45=45ADF为等腰直角三角形AF=当EBF=90时,如图所示,由折叠的性质可知ABE=ABD=45,BAD=CABABDACB由情况中的AD=,BD=,可得AB=AD=CD=DBC=ABC-ABD=22.8E=ADB=C+DBC=67.5F=22.5=DBCEFBCADFCDBE=BDA=C+DBC=45+67.5-ABD=112.5-ABD,EBF=2ABDE+EBF=112.5+ABD90F不可能为直角综上所述,AF的长为或.故答案为:或.【点睛】本题考查了等腰三角形的性质,折叠的性质,勾股
16、定理,相似三角形的判定和性质,熟练掌握折叠前后对应角相等,分类讨论利用相似三角形的性质求边长是解题的关键.12、1【解析】由两圆的半径分别为2和5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系和两圆位置关系求得圆心距即可【详解】解:两圆的半径分别为2和5,两圆内切,dRr521cm,故答案为1【点睛】此题考查了圆与圆的位置关系解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系13、0或1【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可【详解】函数经过原点,m(m+1)0,m0或m1,故答案为0或1【点睛】本题考查二次函数图象上点
17、的坐标特征,解题的关键是知道函数图象上的点满足函数解析式14、 (1,2)【分析】根据平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,结合题中是在第一象限内进行变换进一步求解即可.【详解】由题意得:在第一象限内,以原点为位似中心,把OAB缩小为原来的,则点A的对应点A 的坐标为A(2,4),即(1,2).故答案为:(1,2).【点睛】本题主要考查了直角坐标系中位似图形的变换,熟练掌握相关方法是解题关键.15、【分析】先确定抛物线yx22的二次项系数a= 1,顶点坐标为(0,2),向上平移一个单位后(0,1),翻折后二次项系数a= -1,顶
18、点坐标变为(0,1),然后根据顶点式写出新抛物线的解析式【详解】抛物线yx22的顶点坐标为(0,2),点(0,2)向上平移一个单位所得对应点的坐标为(0,1),点(0,1)关于x轴的对称点的坐标为(0,1),因为新抛物线的开口向下,所以新抛物线的解析式为yx2+1故答案为:yx2+1【点睛】此题考查抛物线的平移规律:左加右减,上加下减,翻折口开口方向改变,但是大小没变,因此二次项系数改变的只是符号,正确掌握平移的规律并运用解题是关键16、x1【分析】把二次函数解析式化为顶点式,可求得其开口方向及对称轴,利用二次函数的增减性可求得答案【详解】解:y=-x2+2x+5=-(x-1)2+6,抛物线开
19、口向下,对称轴为x=1,当x1时,y随x的增大而增大,故答案为:1【点睛】此题考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k)17、-3【分析】根据已知条件证得OB=OA,设点A(a, ),过点A作ACx轴,过点B作BDx轴,证明AOCOBD得到,=, 得到点B的坐标,由此求出答案.【详解】AOB是直角三角形,AOB90,B=30,OB=OA,设点A(a, ),过点A作ACx轴,过点B作BDx轴,ACO=BDO=90,BOD+OBD=90,AOB90,AOC+BOD90,AOC=OBD,AOCOBD,=, B(-, ),k
20、=-=-3,故答案为:-3.【点睛】此题考查相似三角形的判定及性质,反比例函数的性质,求函数的解析式需确定的图象上点的坐标,由此作辅助线求点B的坐标解决问题.18、【分析】先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论【详解】由图可知,黑色方砖6块,共有16块方砖,黑色方砖在整个地板中所占的比值,小球最终停留在黑色区域的概率是,故答案为:【点睛】本题考查了几何概率,用到的知识点为:几何概率=相应的面积与总面积之比三、解答题(共66分)19、BH=18450丈,AH=753丈【分析】根据“平行线法”证得BCFHAF、DEGHAG,然后由相似三角形的对应边成比例即可求解【详解】AH
21、BC,BCFHAF,又DEAH,DEGHAG, 又BC=DE,即, BH=30750(步),30750步=18450丈,BH=18450丈,又,步,AH=(步),1255步=753丈,AH=753丈【点睛】本题主要考查了相似三角形的应用,得出FCBFAH,EDGAHG是解题关键20、(1)见解析;(2)【分析】(1)连接OC,先根据得出AOC=BOC,利用角平分线的性质即可得出结论;(2)在直角三角形中利用的特性结合勾股定理,利用面积公式即可求得的面积,同理可求得的面积,继而求得答案【详解】(1)连接,;(2), 同理可得,【点睛】本题考查的是圆心角、弧、弦的关系,熟知在同圆和等圆中,相等的圆
22、心角所对的弧相等,所对的弦也相等是解答此题的关键21、(1);(2)1与2;(3)【分析】(1)已知了抛物线与x轴的交点,可用交点式来设二次函数的解析式然后将另一点的坐标代入即可求出函数的解析式;(2)可根据(1)的抛物线的解析式和反比例函数的解析式来联立方程组,求出的方程组的解就是两函数的交点坐标,然后找出第一象限内交点的坐标,即可得出符合条件的的值,进而可写出所求的两个正整数即可;(3)点B的横坐标为m,满足3mBN,所以点P与M重合时,BP=BM最长,代入CP=BP+BC求CP的最大值【详解】(1)作AHOB,.H(3,5)AH=3,AH=(2)由(1)得A(3,4),又求得直线AB的解
23、析式为:y=旋转,MB=OB=6,作MCOB,AO=BO,AOB=ABOMC=MBsinABO=6=即M点的纵坐标为,代入直线AB得x=,NMB=AOB=ABOMNOB,又MN=AB=5,则+5=(3)连接BP点D为线段OA上的动点,OA的对应边为MN点P为线段MN上的动点点P的运动轨迹是以B为圆心,BP长为半径的圆C在OB上,且CB=OB=3当点P在线段OB上时,CP=BPBC最短;当点P在线段OB延长线上时,CP=BP+BC最长如图3,当BPMN时,BP最短SNBM=SABO,MN=OA=5MNBP=OByABP= =CP最小值=3=当点P与M重合时,BP最大,BP=BM=OB=6CP最大
24、值=6+3=9线段CP长的取值范围为.【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知待定系数法的运用、旋转的性质、三角函数的应用.23、正方形城池的边长为300步【分析】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的对应边成比例,列出方程,通过解方程即可求出小城的边长【详解】依题意得AB=30步,CD=750步.设AE为x步,则正方形边长为2x步,根据题意,RtABERtCED 即. 解得x1=150,x2=-150(不合题意,舍去),2x=300正方形城池的边长为300步.【点睛】本题考查相似三角形的应用.24、(1)12m或16m;(2)195.【分析】(1)、根据AB
25、=x可得BC=28x,然后根据面积列出一元二次方程求出x的值;(2)、根据题意列出S和x的函数关系熟,然后根据题意求出x的取值范围,然后根据函数的性质求出最大值.【详解】(1)、AB=xm,则BC=(28x)m, x(28x)=192,解得:x1=12,x2=16, 答:x的值为12m或16m(2)、AB=xm, BC=28x, S=x(28x)=x2+28x=(x14)2+196,在P处有一棵树与墙CD,AD的距离分别是16m和6m,28-x15,x6 6x13,当x=13时,S取到最大值为:S=(1314)2+196=195,答:花园面积S的最大值为195平方米【点睛】题主要考查了二次函数
26、的应用以及二次函数最值求法,得出S与x的函数关系式是解题关键25、(1)20;(2)作图见试题解析;(3)【分析】(1)由A类的学生数以及所占的百分比即可求得答案;(2)先求出C类的女生数、D类的男生数,继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案【详解】(1)根据题意得:王老师一共调查学生:(2+1)15%=20(名);故答案为20;(2)C类女生:2025%2=3(名);D类男生:20(115%50%25%)1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2女A男D男A1男
27、D男A2男D女A男D女D男A1女D男A2女D女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:26、(1)旗杆的高约为米;(2)教学楼的高约为米【分析】(1)根据题意可得,在中,利用HDE的正切函数可求出HE的长,根据BH=BE+HE即可得答案;(2)设米,由可得EF=GF=x,利用GDF的正切函数列方程可求出x的值,根据CG=GF+CF即可得答案【详解】(1)由已知得,在中,旗杆的高约为米(2)设米,在中,在中,即,解得:,CG=CF+FG=1+=21.25,教学楼的高约为米【点睛】本题考查解直角三角形的应用,熟练掌握三角函数的定义是解题关键