1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷
2、和答题卡一并交回。一、选择题(每小题3分,共30分)1函数与()在同一坐标系中的图象可能是()ABCD2若关于的一元二次方程有两个不相等的实数根,则的取值范围( )A且BCD3方程的两根分别是,则等于 ( )A1B-1C3D-34如图,下列条件中,能判定的是( )ABCD5如图,直线l1l2l3,两条直线AC和DF与l1,l2,l3分别相交于点A、B、C和点D、E、F,则下列比例式不正确的是()ABCD6如图,一条抛物线与轴相交于、两点(点在点的左侧),其顶点在线段上移动若点、的坐标分别为、,点的横坐标的最大值为,则点的横坐标的最小值为( )ABCD7已知关于x的一元二次方程有两个不相等的实数
3、根,则k的取值范围是( )Ak-3Bk-3Ck0Dk18二次函数y=x2+4x+3的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是()A先向左平移2个单位,再先向上平移1个单位B先向左平移2个单位,再先向下平移1个单位C先向右平移2个单位,再先向上平移1个单位D先向右平移2个单位,再先向下平移1个单位9如图,已知抛物线与轴分别交于、两点,将抛物线向上平移得到,过点作轴交抛物线于点,如果由抛物线、直线及轴所围成的阴影部分的面积为,则抛物线的函数表达式为( )ABCD10已知某函数的图象与函数的图象关于直线对称,则以下各点一定在图象上的是( )ABCD二、填空题(每小题3分,共24分
4、)11反比例函数的图象上有一点P(2,n),将点P向右平移1个单位,再向下平移1个单位得到点Q,若点Q也在该函数的图象上,则k_12若二次函数的对称轴为直线,则关于的方程的解为_13方程组的解是_14抛物线y=(x2)23的顶点坐标是_15P是等边ABC内部一点,APB、BPC、CPA的大小之比是5:6:7,将ABP逆时针旋转,使得AB与AC重合,则以PA、PB、PC的长为边的三角形的三个角PCQ:QPC:PQC=_ 16方程的根是_17顺次连接矩形各边中点所得四边形为_18如图,与中,AD的长为_.三、解答题(共66分)19(10分)在数学活动课上,同学们用一根长为1米的细绳围矩形(1)小明
5、围出了一个面积为600cm2的矩形,请你算一算,她围成的矩形的长和宽各是多少?(2)小颖想用这根细绳围成一个面积尽可能大的矩形,请你用所学过的知识帮他分析应该怎么围,并求出最大面积.20(6分)为推进“传统文化进校园”活动,我市某中学举行了“走进经典”征文比赛,赛后整理参赛学生的成绩,将学生的成绩分为四个等级,并将结果绘制成不完整的条形统计图和扇形统计图请根据统计图解答下列问题:(1)参加征文比赛的学生共有 人;(2)补全条形统计图;(3)在扇形统计图中,表示等级的扇形的圆心角为_ 图中 ;(4)学校决定从本次比赛获得等级的学生中选出两名去参加市征文比赛,已知等级中有男生一名,女生两名,请用列
6、表或画树状图的方法求出所选两名学生恰好是一名男生和一名女生的概率21(6分)如图,在ABC中,点D在边AB上,DEBC,DFAC,DE、DF分别交边AC、BC于点E、F,且(1)求的值;(2)联结EF,设=,=,用含、的式子表示22(8分)某服装店因为换季更新,采购了一批新服装,有A、B两种款式共100件,花费了6600元,已知A种款式单价是80元/件,B种款式的单价是40元/件(1)求两种款式的服装各采购了多少件?(2)如果另一个服装店也想要采购这两种款式的服装共60件,且采购服装的费用不超过3300元,那么A种款式的服装最多能采购多少件?23(8分)(1)计算:|2|+(3)1+2sin6
7、1(2)解下列方程:x23x1124(8分)如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连接AF,BF,EF,过点F作GFAF交AD于点G,设(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值25(10分)如图,在平面直角坐标系xOy中,曲线经过点A(1)求曲线的表达式; (2)直线y=ax+3(a0)与曲线围成的封闭区域为图象G当时,直接写出图象G上的整数点个数是 ;(注:横,纵坐标均为整数的点称为整点,图象G包含边界)当图象
8、G内只有3个整数点时,直接写出a的取值范围26(10分)下面是一位同学做的一道作图题:已知线段、(如图所示),求作线段,使.他的作法如下:1.以下为端点画射线,.2.在上依次截取,.3.在上截取.4.联结,过点作,交于点.所以:线段_就是所求的线段.(1)试将结论补完整:线段_就是所求的线段.(2)这位同学作图的依据是_;(3)如果,试用向量表示向量.参考答案一、选择题(每小题3分,共30分)1、D【分析】根据反比例函数与一次函数的图象特点解答即可【详解】时,在一、二、四象限,在一、三象限,无选项符合时,在一、三、四象限,()在二、四象限,只有D符合;故选:D【点睛】本题主要考查了反比例函数的
9、图象性质和一次函数的图象性质,关键是由的取值确定函数所在的象限2、A【分析】根据题意可得k满足两个条件,一是此方程是一元二次方程,所以二次项系数k不等于0,二是方程有两个不相等的实数根,所以b2-4ac0,根据这两点列式求解即可.【详解】解:根据题意得,k0,且(-6)2-36k0,解得,且.故选:A.【点睛】本题考查一元二次方程的定义及利用一元二次方程根的情况确定字母系数的取值范围,根据需满足定义及根的情况列式求解是解答此题的重要思路.3、B【分析】根据一元二次方程根与系数的关系,即可得到答案.【详解】解:的两根分别是,故选:B.【点睛】本题考查了一元二次方程根与系数的关系,解题的关键是熟练
10、掌握一元二次方程根与系数的关系进行解题.4、D【分析】根据相似三角形的各个判定定理逐一分析即可【详解】解:A=A若,不是对应角,不能判定,故A选项不符合题意;若,不是对应角,不能判定,故B选项不符合题意;若,但A不是两组对应边的夹角,不能判定,故C选项不符合题意; 若,根据有两组对应边成比例且夹角对应相等的两个三角形相似可得,故D选项符合题意故选D【点睛】此题考查的是使两个三角形相似所添加的条件,掌握相似三角形的各个判定定理是解决此题的关键5、D【解析】试题分析:根据平行线分线段成比例定理,即可进行判断.解:l1l2l3,.选项A、B、C正确,D错误.故选D.点睛:本题是一道关于平行线分线段成
11、比例的题目,掌握平行线分线段成比例的相关知识是解答本题的关键6、C【分析】根据顶点在线段上移动,又知点、的坐标分别为、,再根据平行于轴,之间距离不变,点的横坐标的最大值为,分别求出对称轴过点和时的情况,即可判断出点横坐标的最小值【详解】根据题意知,点的横坐标的最大值为,此时对称轴过点,点的横坐标最大,此时的点坐标为,当对称轴过点时,点的横坐标最小,此时的点坐标为,点的坐标为,故点的横坐标的最小值为,故选:C【点睛】本题考查了抛物线与轴的交点,二次函数的图象与性质解答本题的关键是理解二次函数在平行于轴的直线上移动时,两交点之间的距离不变7、D【解析】根据0且k-10列式求解即可.【详解】由题意得
12、()2-41(-1)0且k-10,解之得k1.故选D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当0时,一元二次方程有两个不相等的实数根;当=0时,一元二次方程有两个相等的实数根;当0,AB=,.(3)解:设AE=a,则AD=na,由AD=1AB,则AB=.当点F落在线段BC上时(如图2),EF=AE=AB=a,此时,n=1,当点F落在矩形外部时,n1点F落在矩形的内部,点G在AD上,FCGBCD,FCG90,若CFG=90,则点F落在AC上,由(2)得=,n=2若CGF=90(如图3),则CGD
13、+AGF=90,FAG+AGF=90,CGD=FAG=ABE,BAE=D=90,ABEDGC,ABDC=DGAE,即.解得 n=或n=1(不合题意,舍去),当n=2或时,以点F,C,G为顶点的三角形是直角三角形考点:矩形的性质;解直角三角形的应用;相似三角形的判定与性质;分类讨论;压轴题25、(1)y=;(2)3;-1a-【分析】(1)由题意代入A点坐标,求出曲线的表达式即可; (2)当时,根据图像直接写出图象G上的整数点个数即可;当图象G内只有3个整数点时,根据图像直接写出a的取值范围【详解】解:(1)A(1,1), k=1, (2)观察图形时,可知个数为3; 观察图像得到【点睛】本题考查反
14、比例函数图像相关性质,熟练掌握反比例函数图像相关性质是解题关键.26、(1)CD;(2)平行线分段成比例定理(两条直线被三条平行的直线所截,截得的对应线段成比例)等;(3)【分析】(1)根据作图依据平行线分线段成比例定理求解可得;(2)根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;(3)先证OACOBD得,即,从而知,又,与反向可得出结果.【详解】解:(1)根据作图知,线段CD就是所求的线段x,故答案为:CD;(2)平行线分段成比例定理(两条直线被三条平行的直线所截,截得的对应线段成比例);或三角形一边的平行线性质定理(平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例).(3),OACOBD,.,.得.,与反向,.【点睛】本题主要考查作图-复杂作图,解题的关键是熟练掌握平行线分线段成比例定理及向量的计算