资源描述
2022-2023学年九上数学期末模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.若点(2, 3)在反比例函数y=的图象上,那么下列各点在此图象上的是( )
A.(-2,3) B.(1,5) C.(1, 6) D.(1, -6)
2.已知x1,x2是一元二次方程的两根,则x1+x2的值是( )
A.0 B.2 C.-2 D.4
3.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )
A.方差 B.平均数 C.众数 D.中位数
4.如图所示,在中,,若,,则的值为( )
A. B. C. D.
5.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来谷米1534石,验得其中夹有谷粒.现从中抽取谷米一把,共数得254粒,其中夹有谷粒28粒,则这批谷米内夹有谷粒约是( )
A.134石 B.169石 C.338石 D.1365石
6.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是( )
A. B. C. D.
7.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是( )
A.PD B.PB C.PE D.PC
8.四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )
A.AB=CD B.AB=BC C.AC⊥BD D.AC=BD
9.如图,在△ABC中,AB=AC,D、E、F分别是边AB、AC、BC的中点,若CE=2,则四边形ADFE的周长为( )
A.2 B.4 C.6 D.8
10.已知关于x的方程ax2+bx+c=0(a≠0),则下列判断中不正确的是( )
A.若方程有一根为1,则a+b+c=0
B.若a,c异号,则方程必有解
C.若b=0,则方程两根互为相反数
D.若c=0,则方程有一根为0
11.如图,点是的边上的一点,若添加一个条件,使与相似,则下列所添加的条件错误的是( )
A. B. C. D.
12.如图,将Rt△ABC绕直角顶点A,沿顺时针方向旋转后得到Rt△AB1C1,当点B1恰好落在斜边BC的中点时,则∠B1AC=( )
A.25° B.30° C.40° D.60°
二、填空题(每题4分,共24分)
13.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是 米.
14.如图,矩形纸片中,,,将纸片沿折叠,使点落在边上的处,折痕分别交边、于点、,且.再将纸片沿折叠,使点落在线段上的处,折痕交边于点.连接,则的长是______.
15.如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为1:的坡面AD走了200米到D处,此时在D处测得山顶B的仰角为60°,则山高BC=_____米(结果保留根号).
16.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.1.根据上述数据,估计口袋中大约有_______个黄球
17.如图,正方形中,点为射线上一点,,交的延长线于点,若,则______
18.反比例函数()的图象如图所示,点为图象上的一点,过点作轴,轴,若四边形的面积为4,则的值为______.
三、解答题(共78分)
19.(8分)解方程
(1)2x2﹣7x+3=1;
(2)x2﹣3x=1.
20.(8分)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点处垂直海面发射,当火箭到达点处时,海岸边处的雷达站测得点到点的距离为8千米,仰角为30°.火箭继续直线上升到达点处,此时海岸边处的雷达测得处的仰角增加15°,求此时火箭所在点处与发射站点处的距离.(结果精确到0.1千米)(参考数据:,)
21.(8分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.
(1)开通隧道前,汽车从A地到B地要走多少千米?
(2)开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)
22.(10分)已知:关于x的方程,
(1)求证:无论k取任何实数值,方程总有实数根;
(2)若等腰三角形ABC的一边长a=1,两个边长b,c恰好是这个方程的两个根,求△ABC的周长.
23.(10分)如图,在平行四边形中,过点作垂足为.连接为线段上一点,且.求证:.
24.(10分)先化简,再求值:,其中﹣2≤a≤2,从中选一个你喜欢的整数代入求值.
25.(12分)为培养学生良好的学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,请根据图表中提供的信息,解答下列问题:
整理情况
频数
频率
非常好
0.21
较好
70
一般
不好
36
(1)本次抽样共调查了多少名学生?
(2)补全统计表中所缺的数据.
(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名.
26.已知,为⊙的直径,过点的弦∥半径,若.求的度数.
参考答案
一、选择题(每题4分,共48分)
1、C
【解析】将(2,3)代入y=即可求出k的值,再根据k=xy解答即可.
【详解】∵点(2,3)在反比例函数y=(k≠0)的图象上,
∴k=xy=2×3=6,
A、∵-2×3=-6≠6,∴此点不在函数图象上;
B、∵1×5=5≠6,∴此点不在函数图象上;
C、∵1×6=6,此点在函数图象上;
D、∵1×(-6)=-6≠6,此点不在函数图象上.
故选:C.
【点睛】
本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.
2、B
【解析】∵x1,x1是一元二次方程的两根,∴x1+x1=1.故选B.
3、A
【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.
【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差
故选A
考点:方差
4、B
【分析】由DE∥BC,可得△ADE∽△ABC,推出,即可得出结论.
【详解】∵AD=3,DB=4,
∴AB=3+4=1.
∵DE∥BC,
∴△ADE∽△ABC,
∴.
故选:B.
【点睛】
本题考查了相似三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
5、B
【解析】根据254粒内夹谷28粒,可得比例,再乘以1534石,即可得出答案.
【详解】解:根据题意得: 1534×≈169(石),
答:这批谷米内夹有谷粒约169石;
故选B.
【点睛】
本题考查了用样本估计总体,用样本估计总体是统计的基本思想,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
6、B
【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,只有选项B符合条件.故选B.
7、C
【解析】观察可得,点P在线段AC上由A到C的运动中,线段PE逐渐变短,当EP⊥AC时,PE最短,过垂直这个点后,PE又逐渐变长,当AP=m时,点P停止运动,符合图像的只有线段PE,故选C.
点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.
8、D
【解析】四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.
【详解】添加AC=BD,
∵四边形ABCD的对角线互相平分,
∴四边形ABCD是平行四边形,
∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,
∴四边形ABCD是矩形,
故选D.
【点睛】
考查了矩形的判定,关键是掌握矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.
9、D
【分析】根据三角形的中点的概念求出AB、AC,根据三角形中位线定理求出DF、EF,计算得到答案.
【详解】解:∵点E是AC的中点,AB=AC,
∴AB=AC=4,
∵D是边AB的中点,
∴AD=2,
∵D、F分别是边、AB、BC的中点,
∴DF=AC=2,
同理,EF=2,
∴四边形ADFE的周长=AD+DF+FE+EA=8,
故选:D.
【点睛】
本题考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.
10、C
【分析】将x=1代入方程即可判断A,利用根的判别式可判断B,将b=1代入方程,再用判别式判断C,将c=1代入方程,可判断D.
【详解】A.若方程有一根为1,把x=1代入原方程,则,故A正确;
B.若a、c异号,则△=,∴方程必有解,故B正确;
C.若b=1,只有当△=时,方程两根互为相反数,故C错误;
D.若c=1,则方程变为,必有一根为1.故选C.
【点睛】
本题考查一元二次方程的相关概念,熟练掌握一元二次方程的定义和解法是关键.
11、D
【分析】在与中,已知有一对公共角∠B,只需再添加一组对应角相等,或夹已知等角的两组对应边成比例,即可判断正误.
【详解】A.已知∠B=∠B, 若,则可以证明两三角形相似,正确,不符合题意;
B.已知∠B=∠B, 若,则可以证明两三角形相似,正确,不符合题意;
C.已知∠B=∠B, 若,则可以证明两三角形相似,正确,不符合题意;
D.若,但夹的角不是公共等角∠B,则不能证明两三角形相似,错误,符合题意,
故选:D.
【点睛】
本题考查相似三角形的判定,熟练掌握相似三角形的判定条件是解答的关键.
12、B
【分析】先根据直角三角形斜边上的中线性质得AB1=BB1,再根据旋转的性质得AB1=AB,旋转角等于∠BAB1,则可判断△ABB1为等边三角形,所以∠BAB1=60°,从而得出结论.
【详解】解:∵点B1为斜边BC的中点,
∴AB1=BB1,
∵△ABC绕直角顶点A顺时针旋转到△AB1C1的位置,
∴AB1=AB,旋转角等于∠BAB1,
∴AB1=BB1=AB,
∴△ABB1为等边三角形,
∴∠BAB1=60°.
∴∠B1AC=90°﹣60°=30°.
故选:B.
【点睛】
本题主要考察旋转的性质,解题关键是判断出△ABB1为等边三角形.
二、填空题(每题4分,共24分)
13、1.
【解析】试题分析:根据题目中的条件易证△ABP∽△CDP,由相似三角形对应边的比相等可得,即,解得CD=1m.
考点:相似三角形的应用.
14、
【分析】过点E作EG⊥BC于G,根据矩形的性质可得:EG=AB=8cm,∠A=90°,,然后根据折叠的性质可得:cm,,,,根据勾股定理和锐角三角函数即可求出cos∠,再根据同角的余角相等可得,再根据锐角三角函数即可求出,从而求出,最后根据勾股定理即可求出.
【详解】过点E作EG⊥BC于G
∵矩形纸片中,,,
∴EG=AB=8cm,∠A=90°,
根据折叠的性质cm,,,
∴BF=AB-AF=3cm
根据勾股定理可得:cm
∴cos∠
∵,
∴
∴
解得:cm
∴AE=10cm,
∴ED=AD-AE=2cm
∴
∴
根据勾股定理可得:
故答案为:.
【点睛】
此题考查的是矩形的性质、折叠的性质、勾股定理和锐角三角函数,掌握矩形的性质、折叠的性质、用勾股定理和锐角三角函数解直角三角形是解决此题的关键.
15、300+100
【分析】作DF⊥AC于F.解直角三角形分别求出BE、EC即可解决问题.
【详解】作DF⊥AC于F.
∵DF:AF=1:,AD=200米,
∴tan∠DAF=,
∴∠DAF=30°,
∴DF=AD=×200=100(米),
∵∠DEC=∠BCA=∠DFC=90°,
∴四边形DECF是矩形,
∴EC=DF=100(米),
∵∠BAC=45°,BC⊥AC,
∴∠ABC=45°,
∵∠BDE=60°,DE⊥BC,
∴∠DBE=90°﹣∠BDE=90°﹣60°=30°,
∴∠ABD=∠ABC﹣∠DBE=45°﹣30°=15°,∠BAD=∠BAC﹣∠DAC=45°﹣30°=15°,
∴∠ABD=∠BAD,
∴AD=BD=200(米),
在Rt△BDE中,sin∠BDE=,
∴BE=BD•sin∠BDE=200×=300(米),
∴BC=BE+EC=300+100(米);
故答案为:300+100.
【点睛】
本题考查解直角三角形的应用仰角俯角问题,坡度坡角问题等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题
16、2
【详解】解:∵小明通过多次摸球实验后发现其中摸到红色球的频率稳定在0.1,
设黄球有x个,
∴0.1(x+10)=10,
解得x=2.
答:口袋中黄色球的个数很可能是2个.
17、
【分析】连接AC交BD于O,作FG⊥BE于G,证出△BFG是等腰直角三角形,得出BG=FG=BF=,由三角形的外角性质得出∠AED=30°,由直角三角形的性质得出OE=OA,求出∠FEG=60°,∠EFG=30°,进而求出OA的值,即可得出答案.
【详解】连接AC交BD于O,作FG⊥BE于G,如图所示
则∠BGF=∠EGF=90°
∵四边形ABCD是正方形
∴AC⊥BD,OA=OB=OC=OD,∠ADB=∠CBG=45°
∴△BFG是等腰直角三角形
∴BG=FG=BF=
∵∠ADB=∠EAD+∠AED,∠EAD=15°
∴∠AED=30°
∴OE=OA
∵EF⊥AE
∴∠FEG=60°
∴∠EFG=30°
∴EG=FG=
∴BE=BG+EG=
∵OA+AO=
解得:OA=
∴AB=OA=
故答案为
【点睛】
本题考查了正方形和等腰直角三角形的性质,综合性较强,需要熟练掌握相关性质.
18、4
【分析】根据反比例函数的性质得出,再结合图象即可得出答案.
【详解】表示的是x与y的坐标形成的矩形的面积
反比例函数()的图象在第一象限
故答案为:4.
【点睛】
本题考查了反比例函数的性质,反比例函数中,的绝对值表示的是x与y的坐标形成的矩形的面积.
三、解答题(共78分)
19、(1)x1=2,x2;(2)x1 =1或x2 =2.
【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;
(2)提取公因式x后,求出方程的解即可;
【详解】解:
(1)2x2﹣7x+2=1,
(x﹣2)(2x﹣1)=1,
∴x﹣2=1或2x﹣1=1,
∴x1=2,x2;
(2)x2﹣2x=1,
x(x﹣2)=1,
x1 =1 或,x2 =2.
【点睛】
本题主要考查了解一元二次方程,掌握解一元二次方程是解题的关键.
20、此时火箭所在点处与发射站点处的距离约为.
【解析】利用已知结合锐角三角函数关系得出的长.
【详解】解:如图所示:连接,由题意可得:,,
,,
在直角中,.
在直角中,.
答:此时火箭所在点处与发射站点处的距离约为.
【点睛】
本题考查解直角三角形的应用﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.
21、 (1)开通隧道前,汽车从A地到B地要走(80+40)千米;(2)汽车从A地到B地比原来少走的路程为[40+40(﹣)]千米.
【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;
(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.
【详解】(1)过点C作AB的垂线CD,垂足为D,
∵AB⊥CD,sin30°=,BC=80千米,
∴CD=BC•sin30°=80×=40(千米),
AC=(千米),
AC+BC=80+(千米),
答:开通隧道前,汽车从A地到B地要走(80+)千米;
(2)∵cos30°=,BC=80(千米),
∴BD=BC•cos30°=80×(千米),
∵tan45°=,CD=40(千米),
∴AD=(千米),
∴AB=AD+BD=40+(千米),
∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=80+﹣40﹣=40+40(千米).
答:汽车从A地到B地比原来少走的路程为 [40+40]千米.
【点睛】
本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
22、(1)证明见解析;(2)△ABC的周长为1.
【分析】(1)根据一元二次方程根与判别式的关系即可得答案;
(2)分a为底边和a为腰两种情况,当a为底边时,b=c,可得方程的判别式△=0,可求出k值,解方程可求出b、c的值;当a为一腰时,则方程有一根为1,代入可求出k值,解方程可求出b、c的值,根据三角形的三边关系判断是否构成三角形,进而可求出周长.
【详解】(1)∵判别式△=[-(k+2)]²-4×2k=k²-4k+4=(k-2)²≥0,
∴无论k取任何实数值,方程总有实数根.
(2)当a=1为底边时,则b=c,
∴△=(k-2)²=0,
解得:k=2,
∴方程为x2-4x+4=0,
解得:x1=x2=2,即b=c=2,
∵1、2、2可以构成三角形,
∴△ABC的周长为:1+2+2=1.
当a=1为一腰时,则方程有一个根为1,
∴1-(k+2)+2k=0,
解得:k=1,
∴方程为x2-3x+2=0,
解得:x1=1,x2=2,
∵1+1=2,
∴1、1、2不能构成三角形,
综上所述:△ABC的周长为1.
【点睛】
本题考查一元二次方程根的判别式及三角形的三边关系.一元二次方程根的情况与判别式△的关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0,方程没有实数根;三角形任意两边之和大于第三边,任意两边之差小于第三边;熟练掌握根与判别式的关系是解题关键.
23、详见解析
【分析】根据平行四边形的性质可得∠B+∠C=180°,∠ADF=∠DEC,结合∠AFD+∠AFE=180°,,即可得出∠AFD=∠C,进而可证出△ADF∽△DEC
【详解】解:四边形是平行四边形,
,
,
.
∴△ADF∽△DEC.
【点睛】
本题考查了相似三角形的判定及平行四边形的性质. 解题的关键是根据平行四边形的性质结合角的计算找出∠ADF=∠DEC,∠AFD=∠C.
24、,1
【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出的值,代入计算即可求出值.
【详解】解:原式=,
∵﹣2≤a≤2,且a为整数,
∴a=0,1,﹣2时没有意义,a=﹣1或2,
当a=﹣1时,原式=﹣2;当a=2时,原式=1.
【点睛】
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
25、(1)200人;(2)见详解;(3)840人
【分析】(1)根据较好的部分对应的圆心角即可求得对应的百分比,即可求得总数,然后根据频率=频数÷总数即可求解;
(2)利用公式:频率=频数÷总数即可求解;
(3) 利用总人数乘以对应的频率即可.
【详解】解:(1)较好的所占的比例是:,
则本次抽样共调查的人数是:(人);
(2)非常好的频数是:(人),
一般的频数是:(人),
较好的频率是:,
一般的频率是:,
不好的频率是:,
故补全表格如下所示:
整理情况
频数
频率
非常好
42
0.21
较好
70
0.35
一般
52
0.26
不好
36
0.18
(3) 该校学生整理错题集情况“非常好”和“较好”的学生的频率为0.21+0.35=0.56,
该校学生整理错题集情况“非常好”和“较好”的学生一共约有(人) .
【点睛】
本题考查的是扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
26、∠C=30°
【分析】根据平行线的性质求出∠AOD,根据圆周角定理解答.
【详解】解:∵OA∥DE,
∴∠AOD=∠D=60°,
由圆周角定理得,∠C= ∠AOD=30°
【点睛】
本题考查的是圆周角定理和平行线的性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.
展开阅读全文