资源描述
八年级数学上册压轴题质量检测试卷
2.已知△ABC是等边三角形,△ADE的顶点D在边BC上
(1)如图1,若AD=DE,∠AED=60°,求∠ACE的度数;
(2)如图2,若点D为BC的中点,AE=AC,∠EAC=90°,连CE,求证:CE=2BF;
(3)如图3,若点D为BC的一动点,∠AED=90°,∠ADE=30°,已知△ABC的面积为4,当点D在BC上运动时,△ABE的面积是否发生变化?若不变,请求出其面积;若变化请说明理由.
2.如图,在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足.
(1)直接写出______,______;
(2)连接AB,P为内一点,.
①如图1,过点作,且,连接并延长,交于.求证:;
②如图2,在的延长线上取点,连接.若,点P(2n,−n),试求点的坐标.
3.如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(0,a),点B(b,0),且a、b满足a2-4a+4+=0.
(1)求a,b的值;
(2)以AB为边作Rt△ABC,点C在直线AB的右侧,且∠ACB=45°,求点C的坐标;
(3)若(2)的点C在第四象限(如图2),AC与 x轴交于点D,BC与y轴交于点E,连接 DE,过点C作CF⊥BC交x轴于点F.
①求证:CF=BC;
②直接写出点C到DE的距离.
4.已知ABC中,∠BAC=60°,以AB和BC为边向外作等边ABD和等边BCE.
(1)连接AE、CD,如图1,求证:AE=CD;
(2)若N为CD中点,连接AN,如图2,求证:CE=2AN
(3)若AB⊥BC,延长AB交DE于M,DB=,如图3,则BM=_______(直接写出结果)
5.若整式A只含有字母x,且A的次数不超过3次,令,其中a,b,c,d为整数,在平面直角坐标系中,我们定义:M为整式A的关联点,我们规定次数超过3次的整式没有关联点.例如,若整式,则a=0,b=2,c=-5,d=4,故A的关联点为(-5,-11).
(1)若,试求出A的关联点坐标;
(2)若整式B是只含有字母x的整式,整式C是B与的乘积,若整式C的关联点为(6,15),求整式B的表达式.
(3)若整式D=x-2,整式E是只含有字母x的一次多项式,整式F是整式D与整式E的平方的乘积,若整式F的关联点为(-32,0),请直接写出整式E的表达式.
6.方法探究:
已知二次多项式,我们把代入多项式,发现,由此可以推断多项式中有因式(x+3).设另一个因式为(x+k),多项式可以表示成,则有,因为对应项的系数是对应相等的,即,解得,因此多项式分解因式得:.我们把以上分解因式的方法叫“试根法”.
问题解决:
(1)对于二次多项式,我们把x= 代入该式,会发现成立;
(2)对于三次多项式,我们把x=1代入多项式,发现,由此可以推断多项式中有因式(),设另一个因式为(),多项式可以表示成,试求出题目中a,b的值;
(3)对于多项式,用“试根法”分解因式.
7.在Rt△中,,∠,点是上一点.
(1)如图,平分∠,求证;
(2)如图,点在线段上,且∠,∠,求证;
(3)如图3,BM⊥AM,M是△ABC的中线AD延长线上一点,N在AD上,AN=BM,若DM=2,则MN= (直接写出结果).
8.问题引入:
(1)如图1,在中,点O是和平分线的交点,若,则______(用表示):如图2,,,,则______(用表示);
拓展研究:
(2)如图3,,,,猜想度数(用表示),并说明理由;
(3)BO、CO分别是的外角、的n等分线,它们交于点O,,,,请猜想______(直接写出答案).
【参考答案】
2.(1)60°;(2)见解析;(3)不变,
【分析】(1)由题意,先证△ADE是等边三角形,再证△BAD≌△CAE,得∠ACE=∠B=60°;
(2)由题意,先求出∠BEC=30°,然后求出∠CF
解析:(1)60°;(2)见解析;(3)不变,
【分析】(1)由题意,先证△ADE是等边三角形,再证△BAD≌△CAE,得∠ACE=∠B=60°;
(2)由题意,先求出∠BEC=30°,然后求出∠CFE=90°,利用直角三角形中30度角所对直角边等于斜边的一半,即可得证;
(3)延长AE至F,使EF=AE,连DF、CF,先证明△ADF是等边三角形,然后证明△EGF≌△EHA,结合HG是定值,即可得到答案.
【详解】解:(1)根据题意,
∵AD=DE,∠AED=60°,
∴△ADE是等边三角形,
∴AD=AE,∠DAE=60°,
∵AB=AC,∠BAC=60°,
∴,
即,
∴△BAD≌△CAE,
∴∠ACE=∠B=60°;
(2)连CF,如图:
∵AB=AC=AE,
∴∠AEB=∠ABE,
∵∠BAC=60°,∠EAC=90°,
∴∠BAE=150°,
∴∠AEB=∠ABE=15°;
∵△ACE是等腰直角三角形,
∴∠AEC=45°,
∴∠BEC=30°,∠EBC=45°,
∵AD垂直平分BC,点F在AD上,
∴CF=BF,
∴∠FCB=∠EBC=45°,
∴∠CFE=90°,
在直角△CEF中,∠CFE=90°,∠CEF=30°,
∴CE=2CF=2BF;
(3)延长AE至F,使EF=AE,连DF、CF,如图:
∵∠AED=90°,EF=AE,
∴DE是中线,也是高,
∴△ADF是等腰三角形,
∵∠ADE=30°,
∴∠DAE=60°,
∴△ADF是等边三角形;
由(1)同理可求∠ACF=∠ABC=60°,
∴∠ACF=∠BAC=60°,
∴CF∥AB,
过E作EG⊥CF于G,延长GE交BA的延长线于点H,
易证△EGF≌△EHA,
∴EH=EG=HG,
∵HG是两平行线之间的距离,是定值,
∴S△ABE=S△ABC=;
【点睛】本题考查了等边三角形的判定和性质,等腰三角形的判定和性质,垂直平分线的性质,全等三角形的判定和性质,含30度角的直角三角形的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.
3.(1)3,;(2)①见解析;②的坐标为(,)
【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可;
(2)①连接AC,过点B作BN⊥BP,交CP的延长线于点N,利用SAS证明
解析:(1)3,;(2)①见解析;②的坐标为(,)
【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可;
(2)①连接AC,过点B作BN⊥BP,交CP的延长线于点N,利用SAS证明△OPB≌△OCA,再证明△BNP为等腰直角三角形,利用AAS证明△ACD≌△BND,即可证明AD=DB;
②作出如图所示的辅助线,证明△BMP为等腰直角三角形,利用AAS证明△PBF≌△MPE,求得E(2n,n) ,M(3n−3,n),证明点M,E关于y轴对称,得到3n−3+2n=0,即可求解.
【详解】(1)∵,
∴,
∴,,
解得:,,
故答案为:3,;
(2)①连接AC,
∵∠COP=∠AOB=90°,
∴∠COP-∠AOP =∠AOB-∠AOP,
∴,
在△OPB和△OCA中,
,
∴△OPB≌△OCA(SAS),
∴AC=BP,∠OCA=∠OPB=90°,
过点B作BN⊥BP,交CP的延长线于点N,
∵∠COP=90°,OP=OC,
∴∠OCP=∠OPC=∠ACP=45°,
∵∠OPB=90°,
∴∠BPN=45°,
∴△BNP为等腰直角三角形,
∴∠BPN=∠N=45°,
∴BN=BP=AC,
在△ACD和△BND中,
,
∴△ACD≌△BND(AAS),
∴AD=DB;
②∵∠AOB=90°,AO=OB,
∴△AOB为等腰直角三角形,
∴∠OBA=45°,
∵∠MBO=∠ABP,
∴∠MBO+∠OBP=∠ABP+∠OBP=∠OBA=45°,
∴∠MBP=45°,
∵OP⊥BP,
∴△BMP为等腰直角三角形,
∴MP=BP,
过点P作y轴的平行线EF,分别过M,B作ME⊥EF于E,BF⊥EF于F,EF交x轴于G,ME交y轴于H,连接OE,
∴∠MPE+∠EMP=∠MPE +∠FPB=90°,
∴∠EMP=∠FPB,
在△PBF和△MPE中,
,
∴△PBF≌△MPE(AAS),
∴BF=EP,PF=ME,
∵P(2n,−n),
∴BF=EP=EH=2n,PG=EG=n,PF=ME=3−n,
∴MH=ME-EH=3−n−2n=3−3n,
∴E(2n,n) ,M(3n−3,n),
∴点P,E关于x轴对称,
∴OE=OP,∠OEP=∠OPE,
同理OM=OE,点M,E关于y轴对称,
∴3n−3+2n=0,
解得,即点M的坐标为(,).
【点睛】本题考查了坐标与图形、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用全等三角形的性质解决问题.
4.(1)a=2,b=-1;(2)满足条件的点C(2,1)或(1,-1);(3)①证明见解析;②1.
【分析】(1)可得(a−2)2+=0,由非负数的性质可得出答案;
(2)分两种情况:∠BAC=9
解析:(1)a=2,b=-1;(2)满足条件的点C(2,1)或(1,-1);(3)①证明见解析;②1.
【分析】(1)可得(a−2)2+=0,由非负数的性质可得出答案;
(2)分两种情况:∠BAC=90°或∠ABC=90°,根据等腰直角三角形的性质及全等三角形的性质可求出点C的坐标;
(3)①如图3,过点C作CL⊥y轴于点L,则CL=1=BO,根据AAS可证明△BOE≌△CLE,得出BE=CE,根据ASA可证明△ABE≌△BCF,得出BE=CF,则结论得证;
②如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,根据SAS可证明△CDE≌△CDF,可得∠BAE=∠CBF,由角平分线的性质可得CK=CH=1.
【详解】(1)∵a2−4a+4+=0,
∴(a−2)2+=0,
∵(a-2)2≥0,≥0,
∴a-2=0,2b+2=0,
∴a=2,b=-1;
(2)由(1)知a=2,b=-1,
∴A(0,2),B(-1,0),
∴OA=2,OB=1,
∵△ABC是直角三角形,且∠ACB=45°,
∴只有∠BAC=90°或∠ABC=90°,
Ⅰ、当∠BAC=90°时,如图1,
∵∠ACB=∠ABC=45°,
∴AB=CB,
过点C作CG⊥OA于G,
∴∠CAG+∠ACG=90°,
∵∠BAO+∠CAG=90°,
∴∠BAO=∠ACG,
在△AOB和△BCP中,
,
∴△AOB≌△CGA(AAS),
∴CG=OA=2,AG=OB=1,
∴OG=OA-AG=1,
∴C(2,1),
Ⅱ、当∠ABC=90°时,如图2,
同Ⅰ的方法得,C(1,-1);
即:满足条件的点C(2,1)或(1,-1)
(3)①如图3,由(2)知点C(1,-1),
过点C作CL⊥y轴于点L,则CL=1=BO,
在△BOE和△CLE中,
,
∴△BOE≌△CLE(AAS),
∴BE=CE,
∵∠ABC=90°,
∴∠BAO+∠BEA=90°,
∵∠BOE=90°,
∴∠CBF+∠BEA=90°,
∴∠BAE=∠CBF,
在△ABE和△BCF中,
,
∴△ABE≌△BCF(ASA),
∴BE=CF,
∴CF=BC;
②点C到DE的距离为1.
如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,
由①知BE=CF,
∵BE=BC,
∴CE=CF,
∵∠ACB=45°,∠BCF=90°,
∴∠ECD=∠DCF,
∵DC=DC,
∴△CDE≌△CDF(SAS),
∴∠BAE=∠CBF,
∴CK=CH=1.
【点睛】此题考查三角形综合题,非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,坐标与图形的性质,等腰三角形的性质,点到直线的距离,角平分线的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
5.(1)见解析
(2)见解析
(3)
【分析】(1)先判断出∠DBC=∠ABE,进而判断出△DBC≌△ABE,即可得出结论;
(2)先判断出△ADN≌△FCN,得出CF=AD,∠NCF=∠AN
解析:(1)见解析
(2)见解析
(3)
【分析】(1)先判断出∠DBC=∠ABE,进而判断出△DBC≌△ABE,即可得出结论;
(2)先判断出△ADN≌△FCN,得出CF=AD,∠NCF=∠AND,进而判断出∠BAC=∠ACF,即可判断出△ABC≌△CFA,即可得出结论;
(3)先判断出△ABC≌△HEB(ASA),得出,,再判断出△ADM≌△HEM (AAS),得出AM=HM,即可得出结论.
(1)
解:∵△ABD和△BCE是等边三角形,
∴BD=AB,BC=BE,∠ABD=∠CBE=60°,
∴∠ABD+∠ABC=∠CBE+∠ABC,
∴∠DBC=∠ABE,
∴△ABE≌△DBC(SAS),
∴AE=CD;
(2)
解:如图,延长AN使NF=AN,连接FC,
∵N为CD中点,
∴DN=CN,
∵∠AND=∠FNC,
∴△ADN≌△FCN(SAS),
∴CF=AD,∠NCF=∠AND,
∵∠DAB=∠BAC=60°
∴∠ACD +∠ADN=60°
∴∠ACF=∠ACD+∠NCF=60°,
∴∠BAC=∠ACF,
∵△ABD是等边三角形,
∴AB=AD,
∴AB=CF,
∵AC=CA,
∴△ABC≌△CFA (SAS),
∴BC=AF,
∵△BCE是等边三角形,
∴CE=BC=AF=2AN;
(3)
解: ∵△ABD是等边三角形,
∴,∠BAD=60°,
在Rt△ABC中,∠ACB=90°-∠BAC=30°,
∴,
如图,过点E作EH // AD交AM的延长线于H,
∴∠H=∠BAD=60°,
∵△BCE是等边三角形,
∴BC=BE,∠CBE=60°,
∵∠ABC=90°,
∴∠EBH=90°-∠CBE=30°=∠ACB,
∴∠BEH=180°-∠EBH-∠H=90°=∠ABC,
∴△ABC≌△HEB (ASA),
∴,,
∴AD=EH,
∵∠AMD=∠HME,
∴△ADM≌△HEM (AAS),
∴AM=HM,
∴
∵,,
∴.
故答案为:.
【点睛】此题是三角形综合题,主要考查了等边三角形的性质,含30°角的直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键.
6.(1)
(2)
(3)或
【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标;
(2)根据题意得出中的次数为次,设 ,计算出,进而表达出,,,的值,再根据的关
解析:(1)
(2)
(3)或
【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标;
(2)根据题意得出中的次数为次,设 ,计算出,进而表达出,,,的值,再根据的关联点为,列出关于 , 的等式,解出、的值即可;
(3)设,根据题意求出,进而表达出,,,的值,再根据的关联点为,列出关于,的等式,解出、的值即可.
(1)
解:(1),
,,,,
,,
的关联点坐标为:,
故笞案为:;
(2)
整式是只含有字母的整式,整式是与的乘积,
是二次多项式,且的次数不能超过次,
中的次数为次,
设 ,
,
,,,,
整式的关联点为,
,,
解得:,,
;
(3)
根据题意:设,
,
,,,,
整式 的关联点为,
,,
,,
,
把代入得: ,
解得: ,
或,
或.
【点睛】本题主要考查整式的乘法,掌握整式的乘法是解决问题的关键.
7.(1)±2
(2)a=0,b=-3;
(3)
【分析】(1)将x=±2代入即可;
(2)由题意得x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,再由系数关系求a、b即可;
(
解析:(1)±2
(2)a=0,b=-3;
(3)
【分析】(1)将x=±2代入即可;
(2)由题意得x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,再由系数关系求a、b即可;
(3)多项式有因式(x-2),设另一个因式为(x2+ax+b),则x3+4x2-3x-18=x3+(a-2)x2-(2a-b)x-2b,再由系数关系求a、b即可.
(1)
解:当x=±2时,x2-4=0,
故答案为:±2;
(2)
解:由题意可知x3-x2-3x+3=(x-1)(x2+ax+b),
∴x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,
∴1-a=1,b=-3,
∴a=0,b=-3;
(3)
解:当x=2时,x3+4x2-3x-18=8+16-6-18=0,
∴多项式有因式(x-2),
设另一个因式为(x2+ax+b),
∴x3+4x2-3x-18=(x-2)(x2+ax+b),
∴x3+4x2-3x-18=x3+(a-2)x2-(2a-b)x-2b,
∴a-2=4,2b=18,
∴a=6,b=9,
∴x3+4x2-3x-18=(x-2)(x2+6x+9)=(x-2)(x+3)2.
【点睛】本题考查因式分解的意义,理解“试根法”的本质,多项式乘多项式的正确展开是解题的关键.
8.(1)见解析
(2)见解析
(3)8
【分析】(1)如图1中,作DH⊥AB于H.证明△ADC≌△ADH即可解决问题.
(2)如图2中,过点C作CM⊥CE交AD的延长线于M,连接BM.证明△A
解析:(1)见解析
(2)见解析
(3)8
【分析】(1)如图1中,作DH⊥AB于H.证明△ADC≌△ADH即可解决问题.
(2)如图2中,过点C作CM⊥CE交AD的延长线于M,连接BM.证明△ACE≌△BCM(SAS),推出AE=BM,再利用直角三角形30度角的性质即可解决问题.
(3)如图3中,作CH⊥MN于H.证明得到,进一步证明即可解决问题.
(1)
证明:如图1中,作DH⊥AB于H.
∵∠ACD=∠AHD=90°,AD=AD,∠DAC=∠DAH,
∴△ADC≌△ADH(ASA),
∴AC=AH,DC=DH,
∵CA=CB,∠C=90°,
∴∠B=45°,
∵∠DHB=90°,
∴∠HDB=∠B=45°,
∴HD=HB,
∴BH=CD,
∴AB=AH+BH=AC+CD.
(2)
如图2中,作CM⊥CE交AD的延长线于M,连接BM.
,
,
,
,
,
∵∠ACB=∠ECM=90°,
,
,
∵CA=CB,CE=CM,
∴△ACE≌△BCM(SAS),
∴AE=BM,
∵在Rt△EMB中,∠MEB=30°,
∴BE=2BM=2AE.
(3)
解:如图3中,作CH⊥MN于H.
,
,
,
,
,
,
,
,,
,
,
,
,
是的中线,
,
,,
,
,
,
.
【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
9.(1),
(2),理由见解析
(3)
【分析】(1)由角平分线的定义得,则,再利用三角形内角和定理可得答案;
(2)根据三角形内角和定理得,而,代入化简即可;
(3)由(2)同理可得答案.
解析:(1),
(2),理由见解析
(3)
【分析】(1)由角平分线的定义得,则,再利用三角形内角和定理可得答案;
(2)根据三角形内角和定理得,而,代入化简即可;
(3)由(2)同理可得答案.
(1)
解:点是和平分线的交点,
,
,
在中,
,
,
,
,
故答案为:;
在中,,
,
,
,
,
故答案为:;
(2)
解:,理由如下:
,,,
,
,
,
,
;
(3)
解:在中,,
,
,
,
,
故答案为:.
【点睛】本题主要考查了三角形内角和定理,角平分线的定义,解题的关键是采取类比的方法,同时渗透了整体思想.
展开阅读全文