1、八年级数学上册压轴题质量检测试卷2已知ABC是等边三角形,ADE的顶点D在边BC上(1)如图1,若ADDE,AED60,求ACE的度数;(2)如图2,若点D为BC的中点,AEAC,EAC90,连CE,求证:CE2BF;(3)如图3,若点D为BC的一动点,AED90,ADE30,已知ABC的面积为4,当点D在BC上运动时,ABE的面积是否发生变化?若不变,请求出其面积;若变化请说明理由2如图,在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足(1)直接写出_,_;(2)连接AB,P为内一点,如图1,过点作,且,连接并延长,交于求证:;如图2,在的延长线上取点,连接若,点P(2n,n)
2、,试求点的坐标3如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(0,a),点B(b,0),且a、b满足a2-4a+4+0(1)求a,b的值;(2)以AB为边作RtABC,点C在直线AB的右侧,且ACB45,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与 x轴交于点D,BC与y轴交于点E,连接 DE,过点C作CFBC交x轴于点F求证:CF=BC;直接写出点C到DE的距离4已知ABC中,BAC=60,以AB和BC为边向外作等边ABD和等边BCE(1)连接AE、CD,如图1,求证:AE=CD;(2)若N为CD中点,连接AN,如图2,求证:CE=2AN(3)若ABBC,延长
3、AB交DE于M,DB=,如图3,则BM=_(直接写出结果)5若整式A只含有字母x,且A的次数不超过3次,令,其中a,b,c,d为整数,在平面直角坐标系中,我们定义:M为整式A的关联点,我们规定次数超过3次的整式没有关联点例如,若整式,则a0,b2,c-5,d4,故A的关联点为(-5,-11)(1)若,试求出A的关联点坐标;(2)若整式B是只含有字母x的整式,整式C是B与的乘积,若整式C的关联点为(6,15),求整式B的表达式(3)若整式Dx-2,整式E是只含有字母x的一次多项式,整式F是整式D与整式E的平方的乘积,若整式F的关联点为(-32,0),请直接写出整式E的表达式6方法探究:已知二次多
4、项式,我们把代入多项式,发现,由此可以推断多项式中有因式(x3)设另一个因式为(xk),多项式可以表示成,则有,因为对应项的系数是对应相等的,即,解得,因此多项式分解因式得:我们把以上分解因式的方法叫“试根法”问题解决:(1)对于二次多项式,我们把x 代入该式,会发现成立;(2)对于三次多项式,我们把x1代入多项式,发现,由此可以推断多项式中有因式(),设另一个因式为(),多项式可以表示成,试求出题目中a,b的值;(3)对于多项式,用“试根法”分解因式7在Rt中,点是上一点(1)如图,平分,求证;(2)如图,点在线段上,且,求证;(3)如图3,BMAM,M是ABC的中线AD延长线上一点,N在A
5、D上,ANBM,若DM2,则MN (直接写出结果)8问题引入:(1)如图1,在中,点O是和平分线的交点,若,则_(用表示):如图2,则_(用表示);拓展研究:(2)如图3,猜想度数(用表示),并说明理由;(3)BO、CO分别是的外角、的n等分线,它们交于点O,请猜想_(直接写出答案)【参考答案】2(1)60;(2)见解析;(3)不变,【分析】(1)由题意,先证ADE是等边三角形,再证BADCAE,得ACE=B=60;(2)由题意,先求出BEC=30,然后求出CF解析:(1)60;(2)见解析;(3)不变,【分析】(1)由题意,先证ADE是等边三角形,再证BADCAE,得ACE=B=60;(2)
6、由题意,先求出BEC=30,然后求出CFE=90,利用直角三角形中30度角所对直角边等于斜边的一半,即可得证;(3)延长AE至F,使EF=AE,连DF、CF,先证明ADF是等边三角形,然后证明EGFEHA,结合HG是定值,即可得到答案【详解】解:(1)根据题意,ADDE,AED60,ADE是等边三角形,AD=AE,DAE=60,AB=AC,BAC=60,即,BADCAE,ACE=B=60;(2)连CF,如图:AB=AC=AE,AEB=ABE,BAC=60,EAC=90,BAE=150,AEB=ABE=15;ACE是等腰直角三角形,AEC=45,BEC=30,EBC=45,AD垂直平分BC,点F
7、在AD上,CF=BF,FCB=EBC=45,CFE=90,在直角CEF中,CFE=90,CEF=30,CE=2CF=2BF;(3)延长AE至F,使EF=AE,连DF、CF,如图:AED90,EF=AE,DE是中线,也是高,ADF是等腰三角形,ADE30,DAE=60,ADF是等边三角形;由(1)同理可求ACF=ABC=60,ACF=BAC=60,CFAB,过E作EGCF于G,延长GE交BA的延长线于点H,易证EGFEHA,EH=EG=HG,HG是两平行线之间的距离,是定值,SABESABC;【点睛】本题考查了等边三角形的判定和性质,等腰三角形的判定和性质,垂直平分线的性质,全等三角形的判定和性
8、质,含30度角的直角三角形的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题3(1)3,;(2)见解析;的坐标为(,)【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可;(2)连接AC,过点B作BNBP,交CP的延长线于点N,利用SAS证明解析:(1)3,;(2)见解析;的坐标为(,)【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可;(2)连接AC,过点B作BNBP,交CP的延长线于点N,利用SAS证明OPBOCA,再证明BNP为等腰直角三角形,利用AAS证明ACDBND,即可证明AD=DB;作出如图所示的辅助线,证明BMP为等腰直
9、角三角形,利用AAS证明PBFMPE,求得E(2n,n) ,M(3n3,n),证明点M,E关于y轴对称,得到3n3+2n=0,即可求解【详解】(1),解得:,故答案为:3,;(2)连接AC,COP=AOB=90,COP-AOP =AOB-AOP,在OPB和OCA中,OPBOCA(SAS),AC=BP,OCA=OPB=90,过点B作BNBP,交CP的延长线于点N,COP=90,OP=OC,OCP=OPC=ACP=45,OPB=90,BPN=45,BNP为等腰直角三角形,BPN=N=45,BN=BP=AC,在ACD和BND中,ACDBND(AAS),AD=DB;AOB=90,AO=OB,AOB为等
10、腰直角三角形,OBA=45,MBO=ABP,MBO+OBP=ABP+OBP=OBA=45,MBP=45,OPBP,BMP为等腰直角三角形,MP=BP,过点P作y轴的平行线EF,分别过M,B作MEEF于E,BFEF于F,EF交x轴于G,ME交y轴于H,连接OE,MPE+EMP=MPE +FPB=90,EMP=FPB,在PBF和MPE中,PBFMPE(AAS),BF=EP,PF=ME,P(2n,n),BF=EP=EH=2n,PG=EG=n,PF=ME=3n,MH=ME-EH=3n2n=33n,E(2n,n) ,M(3n3,n),点P,E关于x轴对称,OE=OP,OEP=OPE,同理OM=OE,点M
11、,E关于y轴对称,3n3+2n=0,解得,即点M的坐标为(,)【点睛】本题考查了坐标与图形、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用全等三角形的性质解决问题4(1)a2,b-1;(2)满足条件的点C(2,1)或(1,-1);(3)证明见解析;1【分析】(1)可得(a2)2+0,由非负数的性质可得出答案;(2)分两种情况:BAC=9解析:(1)a2,b-1;(2)满足条件的点C(2,1)或(1,-1);(3)证明见解析;1【分析】(1)可得(a2)2+0,由非负数的性质可得出答案;(2)分两种情况:BAC=90或AB
12、C=90,根据等腰直角三角形的性质及全等三角形的性质可求出点C的坐标;(3)如图3,过点C作CLy轴于点L,则CL=1=BO,根据AAS可证明BOECLE,得出BE=CE,根据ASA可证明ABEBCF,得出BE=CF,则结论得证;如图4,过点C作CKED于点K,过点C作CHDF于点H,根据SAS可证明CDECDF,可得BAE=CBF,由角平分线的性质可得CK=CH=1【详解】(1)a24a+4+0,(a2)2+0,(a-2)20,0,a-2=0,2b+2=0,a=2,b=-1;(2)由(1)知a=2,b=-1,A(0,2),B(-1,0),OA=2,OB=1,ABC是直角三角形,且ACB=45
13、,只有BAC=90或ABC=90,、当BAC=90时,如图1,ACB=ABC=45,AB=CB,过点C作CGOA于G,CAG+ACG=90,BAO+CAG=90,BAO=ACG,在AOB和BCP中, ,AOBCGA(AAS),CG=OA=2,AG=OB=1,OG=OA-AG=1,C(2,1),、当ABC=90时,如图2,同的方法得,C(1,-1);即:满足条件的点C(2,1)或(1,-1)(3)如图3,由(2)知点C(1,-1),过点C作CLy轴于点L,则CL=1=BO,在BOE和CLE中,BOECLE(AAS),BE=CE,ABC=90,BAO+BEA=90,BOE=90,CBF+BEA=9
14、0,BAE=CBF,在ABE和BCF中,ABEBCF(ASA),BE=CF,CFBC;点C到DE的距离为1如图4,过点C作CKED于点K,过点C作CHDF于点H,由知BE=CF,BE=BC,CE=CF,ACB=45,BCF=90,ECD=DCF,DC=DC,CDECDF(SAS),BAE=CBF,CK=CH=1【点睛】此题考查三角形综合题,非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,坐标与图形的性质,等腰三角形的性质,点到直线的距离,角平分线的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题5(1)见解析(2)见解析(3)【分析】(1)先判断出DBC=ABE,
15、进而判断出DBCABE,即可得出结论;(2)先判断出ADNFCN,得出CF=AD,NCF=AN解析:(1)见解析(2)见解析(3)【分析】(1)先判断出DBC=ABE,进而判断出DBCABE,即可得出结论;(2)先判断出ADNFCN,得出CF=AD,NCF=AND,进而判断出BAC=ACF,即可判断出ABCCFA,即可得出结论;(3)先判断出ABCHEB(ASA),得出,再判断出ADMHEM (AAS),得出AM=HM,即可得出结论(1)解:ABD和BCE是等边三角形,BD=AB,BC=BE,ABD=CBE=60,ABD+ABC=CBE+ABC,DBC=ABE,ABEDBC(SAS),AE=C
16、D;(2)解:如图,延长AN使NF=AN,连接FC,N为CD中点,DN=CN,AND=FNC,ADNFCN(SAS),CF=AD,NCF=AND,DAB=BAC=60ACD +ADN=60ACF=ACD+NCF=60,BAC=ACF,ABD是等边三角形,AB=AD,AB=CF,AC=CA,ABCCFA (SAS),BC=AF,BCE是等边三角形,CE=BC=AF=2AN;(3)解: ABD是等边三角形,BAD=60,在RtABC中,ACB=90BAC=30,如图,过点E作EH / AD交AM的延长线于H,H=BAD=60,BCE是等边三角形,BC=BE,CBE=60,ABC=90,EBH=90
17、CBE=30=ACB,BEH=180EBHH=90=ABC,ABCHEB (ASA),AD=EH,AMD=HME,ADMHEM (AAS),AM=HM,故答案为:【点睛】此题是三角形综合题,主要考查了等边三角形的性质,含30角的直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键6(1)(2)(3)或【分析】(1)根据整式得出,根据关联点的定义得出,即可得出的关联点坐标;(2)根据题意得出中的次数为次,设,计算出,进而表达出,的值,再根据的关解析:(1)(2)(3)或【分析】(1)根据整式得出,根据关联点的定义得出,即可得出的关联点坐标;(2)根据题意得出中的次数为次,设,
18、计算出,进而表达出,的值,再根据的关联点为,列出关于 , 的等式,解出、的值即可;(3)设,根据题意求出,进而表达出,的值,再根据的关联点为,列出关于,的等式,解出、的值即可(1)解:(1),的关联点坐标为:,故笞案为:;(2)整式是只含有字母的整式,整式是与的乘积,是二次多项式,且的次数不能超过次,中的次数为次,设 ,整式的关联点为,解得:,;(3)根据题意:设, ,整式 的关联点为,把代入得: ,解得: , 或,或【点睛】本题主要考查整式的乘法,掌握整式的乘法是解决问题的关键7(1)2(2)a=0,b=-3;(3)【分析】(1)将x=2代入即可;(2)由题意得x3-x2-3x+3=x3-(
19、1-a)x2-(a-b)x-b,再由系数关系求a、b即可;(解析:(1)2(2)a=0,b=-3;(3)【分析】(1)将x=2代入即可;(2)由题意得x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,再由系数关系求a、b即可;(3)多项式有因式(x-2),设另一个因式为(x2+ax+b),则x3+4x2-3x-18=x3+(a-2)x2-(2a-b)x-2b,再由系数关系求a、b即可(1)解:当x=2时,x2-4=0,故答案为:2;(2)解:由题意可知x3-x2-3x+3=(x-1)(x2+ax+b),x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,1-a=1,b=-
20、3,a=0,b=-3;(3)解:当x=2时,x3+4x2-3x-18=8+16-6-18=0,多项式有因式(x-2),设另一个因式为(x2+ax+b),x3+4x2-3x-18=(x-2)(x2+ax+b),x3+4x2-3x-18=x3+(a-2)x2-(2a-b)x-2b,a-2=4,2b=18,a=6,b=9,x3+4x2-3x-18=(x-2)(x2+6x+9)=(x-2)(x+3)2【点睛】本题考查因式分解的意义,理解“试根法”的本质,多项式乘多项式的正确展开是解题的关键8(1)见解析(2)见解析(3)8【分析】(1)如图1中,作DHAB于H证明ADCADH即可解决问题(2)如图2中
21、,过点C作CMCE交AD的延长线于M,连接BM证明A解析:(1)见解析(2)见解析(3)8【分析】(1)如图1中,作DHAB于H证明ADCADH即可解决问题(2)如图2中,过点C作CMCE交AD的延长线于M,连接BM证明ACEBCM(SAS),推出AE=BM,再利用直角三角形30度角的性质即可解决问题(3)如图3中,作CHMN于H证明得到,进一步证明即可解决问题(1)证明:如图1中,作DHAB于HACDAHD90,ADAD,DACDAH,ADCADH(ASA),ACAH,DCDH,CACB,C90,B45,DHB90,HDBB45,HDHB,BHCD,ABAH+BHAC+CD(2)如图2中,作
22、CMCE交AD的延长线于M,连接BM, ,ACBECM90, ,CACB,CECM,ACEBCM(SAS),AEBM,在RtEMB中,MEB30,BE2BM2AE(3)解:如图3中,作CHMN于H,是的中线, ,【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题9(1),(2),理由见解析(3)【分析】(1)由角平分线的定义得,则,再利用三角形内角和定理可得答案;(2)根据三角形内角和定理得,而,代入化简即可;(3)由(2)同理可得答案解析:(1),(2),理由见解析(3)【分析】(1)由角平分线的定义得,则,再利用三角形内角和定理可得答案;(2)根据三角形内角和定理得,而,代入化简即可;(3)由(2)同理可得答案(1)解:点是和平分线的交点,在中,故答案为:;在中,故答案为:;(2)解:,理由如下:,;(3)解:在中,故答案为:【点睛】本题主要考查了三角形内角和定理,角平分线的定义,解题的关键是采取类比的方法,同时渗透了整体思想
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100