1、数学八年级上册期末模拟质量检测试题附解析(一)一、选择题1下列图形中,既是轴对称图形又是中心对称图形的是()ABCD2纳米是非常小的长度单位,把长为2纳米的物体放在乒乓球上,就如同把乒乓球放在地球上2纳米=0.000000002米,0.000000002这个数用科学记数法表示为()ABCD3下列计算中,正确的是()ABCD4使分式有意义的条件是()Ax3Bx3Cx3Dx35下列从左到右的变形中,是因式分解的是()ABCD6根据分式的基本性质,分式可变形为()ABCD7如图,已知ABCBAD,再添加一个条件,仍不能判定ABCBAD的是()AACBDBCDCADBCDABDBAC8若关于x的方程3
2、的解是非负数,则m的取值范围为()Am-7且m-3Bm-7且m-3Cm-7D m-79如图,将大小相同的四个小正方形按照图和图所示的两种方式放置于两个正方形中,根据两个图形中阴影部分的面积关系,可以验证的公式是()ABCD10如图,的外角的平分线相交于点,于,于,下列结论:(1);(2)点在的平分线上;(3),其中正确的有 ()A0个B1个C2个D3个二、填空题11当x的值是_时,分式的值为零12点P(-2,4)关于x轴对称的点的坐标为_13如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数示例:即4+3=7,则(1)用含x的式子表示m_;(2)当y2时,n的值为_14计算 _15如图
3、,点P是AOB内部的一点,AOB=30,OP=8cm,M,N是OA,OB上的两个动点,则MPN周长的最小值_cm16若多项式是一个完全平方式,则k的值为_17已知满足,试求的最大值_18如图,、分别为线段和射线上的一点,若点从点出发向点运动,同时点从点出发向点运动,二者速度之比为,运动到某时刻同时停止,在射线上取一点,使与全等,则的长为_ 三、解答题19分解因式:(1) (2)20(1)解方程:(2)先化简:,再从1,0或1中选一个合适的x的值代入求值21已知:如图,点、在一条直线上,、两点在直线的同侧,求证:22中,点D,E分别是边上的点,点P是一动点,令, 初探:(1)如图1,若点P在线段
4、上,且,则_;(2)如图2,若点P在线段上运动,则之间的关系为_;(3)如图3,若点P在线段的延长线上运动,则之间的关系为_再探:(4)如图4,若点P运动到的内部,写出此时之间的关系,并说明理由(5)若点P运动到的外部,请在图5中画出一种情形,写出此时之间的关系,并说明理由23阅读下列材料:我们知道,分子比分母小的数叫做“真分数”;分子比分母大,或者分子、分母同样大的分数,叫做“假分数”类似地,我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”如:,这样的分式就是假分式:再如:,这样的分式就
5、是真分式,假分数可以化成1(即1)带分数的形式,类似的,假分式也可以化为带分式如:解决下列问题:(1)分式是_(填“真分式”或“假分式”);假分式可化为带分式_形式;(2)如果分式的值为整数,求满足条件的整数x的值(3)若分式的值为m,则m的取值范围是_(直接写出结果)24(1)如图,整个图形是边长为的正方形,其中阴影部分是边长为的正方形,请根据图形,猜想与存在的等量关系,并证明你的猜想;(2)根据(1)中得出的结论,解决下列问题:甲、乙两位司机在同一加油站两次加油,两次油价有变化,两位司机采用不同的加油方式其中,甲每次都加40升油,乙每次加油费都为300元设两次加油时,油价分别为m元/升,n
6、元/升(,且)求甲、乙两次所购的油的平均单价各是多少?通过计算说明,甲、乙哪一个两次加油的平均油价比较低?25阅读材料1:对于两个正实数,由于,所以,即,所以得到,并且当时,阅读材料2:若,则 ,因为,所以由阅读材料1可得:,即的最小值是2,只有时,即=1时取得最小值.根据以上阅读材料,请回答以下问题:(1)比较大小 (其中1); -2(其中-1)(2)已知代数式变形为,求常数的值(3)当= 时,有最小值,最小值为 (直接写出答案).26在ABC中,ACB90,过点C作直线lAB,点B与点D关于直线l对称,连接BD交直线于点P,连接CD点E是AC上一动点,点F是CD上一动点,点E从A点出发,以
7、每秒1cm的速度沿AC路径运动,终点为C点F从D点出发,以每秒2cm的速度沿DCBCD路径运动,终点为D点E、F同时开始运动,第一个点到达终点时第二个点也停止运动(1)当ACBC时,试证明A、C、D三点共线;(温馨提示:证明ACD是平角)(2)若AC10cm,BC7cm,设运动时间为t秒,当点F沿DC方向时,求满足CE2CF时t的值;(3)若AC10cm,BC7cm,过点E、F分别作EM、FN垂直直线l于点M、N,求所有使CEMCFN成立的t的值【参考答案】一、选择题2B解析:B【分析】根据中心对称图形与轴对称图形的概念进行判断即可【详解】解:A不是中心对称图形,是轴对称图形,故此选项不合题意
8、;B既是中心对称图形,也是轴对称图形,故此选项符合题意;C不是中心对称图形,也不是轴对称图形,故此选项不合题意;D不是中心对称图形,是轴对称图形,故此选项不合题意;故选:B【点睛】本题考查的是中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合3C解析:C【分析】根据绝对值小于1的数可以用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,即可求解【详解】解:0.000000002=故选:C【点睛】本题考查用科学记数法
9、表示较小的数,熟练掌握一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定是解题的关键4C解析:C【分析】根据幂的乘方,合并同类项,同底数幂的乘法,同底数幂的除法分别分析即可【详解】A. ,故该选项错误;B. 不能合并,故该选项错误;C. ,故该选项正确;D. ,故该选项错误故选:C【点睛】本题考查幂的乘方,合并同类项,同底数幂的乘法,同底数幂的除法,解题的关键是掌握幂的相关运算5D解析:D【分析】根据分式有意义的条件:分母0,即x30,进行求解即可【详解】解:分式有意义,x30,解得x3故选:D【点睛】此题考查了分式有意义的条件,熟练掌握分式有意义的条件:分母不等于0,是
10、解决问题的关键6D解析:D【分析】根据因式分解是把一个多项式转化成几个整式的积,可得答案【详解】解:A、,该选项不符合题意;B、没把一个多项式转化成几个整式的积,不属于因式分解,故此选项不符合题意;C、是整式的乘法,不属于因式分解,故此选项不符合题意;D、是把一个多项式转化成几个整式的积,属于因式分解,故此选项符合题意故选:D【点睛】此题主要考查因式分解的定义解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形就是把这个多项式因式分解7B解析:B【分析】分式的恒等变形是依据分式的基本性质,分式的分子分母同时乘以或除以同一个非0的数或式子,分式的值不变【详解】解: 故选B
11、【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型8A解析:A【分析】根据已知可以得到ABCBAD,ABBA,然后再分别判断各个选项中的条件能否使得ABCBAD即可【详解】解:ABCBAD,ABBA,若添加条件ACBD,无法判定ABCBAD,故选项A符合题意;若添加CD,则ABCBAD(AAS),故选项B不符合题意;若添加ADBC,则ABCBAD(SAS),故选项C不符合题意;若添加ABDBAC,则ABCBAD(ASA),故选项D不符合题意;故选:A【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键9B解析:B【分析】分式方程去分
12、母转化为整式方程,由分式方程的解是非负数,确定出m的范围即可【详解】解:分式方程去分母得:2x+m-x+1=3x-6,解得:x=(m+7),由分式方程的解是非负数,得到(m+7)0,且(m+7)2,解得:m-7且m-3,故B正确故选:B【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键10A解析:A【分析】根据图形阴影部分的面积的不同求法可得等式【详解】解:阴影部分的面积是四个阴影小正方形的面积和,由拼图可得四个阴影小正方形可以拼成边长为(a-b)的正方形,因此面积为(a-b)2,由图2可知,阴影部分的面积等于边长为a的正方形的面积减去之间十字架的面积,即:a
13、2-2ab+b2,因此有(a-b)2=a2-2ab+b2,故选:A【点睛】本题考查平方差公式、完全平方公式的几何背景,用不同方法表示阴影部分的面积是得出答案的关键11C解析:C【分析】过点P作PGAB,由角平分线的性质定理,得到,可判断(1)(2)正确;由,得到,可判断(3)错误;即可得到答案【详解】解:过点P作PGAB,如图:AP平分CAB,BP平分DBA,PGAB,;故(1)正确;点在的平分线上;故(2)正确;,又,;故(3)错误;正确的选项有2个;故选:C【点睛】本题考查了角平分线的判定定理和性质定理,解题的关键是熟练掌握角平分线的判定和性质进行解题二、填空题12-3【分析】根据分式值为
14、零的条件是分子等于零且分母不等于零列出不等式,解等式或不等式即可【详解】解:由题意得|x|-3=0,且2x-60,解得,x=3,x3,x=-3则x=-3时,分式 的值为零故答案为:-3【点睛】本题主要考查的是分式值为零的条件,特别注意分母不为0的条件,熟练掌握相关知识是解题的关键13【分析】根据关于轴对称的点的横坐标不变,纵坐标互为相反数即可求解【详解】解:点P(-2,4)关于x轴对称的点的坐标为,故答案为:【点睛】本题考查了求关于轴对称的点的坐标,掌握关于坐标轴对称的点的坐标特征是解题的关键14 【分析】(1)根据题意,可以用含x的式子表示出m;(2)根据图形,可以用x的代数式表示出y,列出
15、关于x的分式方程,从而可以求得x的值,进而得到n的值【详解】解:(1)由图可得, 故答案为:;(2),解得,故答案为:【点睛】本题考查了分式的加减、解分式方程,解答本题的关键是明确题意,列出相应的代数式及分式方程及求出方程的解150.125【分析】利用积的乘方的法则进行运算即可【详解】解:8202082020(0.125)(0.1258)2020(0.125)(1)2020(0.125)1(0.125)0.125故答案为:0.125【点睛】本题主要考查积的乘方,解答的关键是熟记积的乘方的法则并灵活运用168【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点M、N在CD上时,PMN的
16、周长最小【详解】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连解析:8【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点M、N在CD上时,PMN的周长最小【详解】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN点P关于OA的对称点为C,关于OB的对称点为D,PM=CM,OP=OC,COA=POA; 点P关于OB的对称点为D,PN=DN,OP=OD,DOB=POB,OC=OD=OP=8cm,COD=COA+POA+POB+DOB=2POA+2POB=2AOB=60,COD是等边三角形,CD
17、=OC=OD=8cmPMN的周长的最小值=PM+MN+PN=CM+MN+DN=CD=8cm故答案为8【点睛】此题考查轴对称-最短路线问题,熟知两点之间线段最短是解题的关键1742【分析】根据完全平方式的特点得到-2k=276,由此求出k【详解】解:多项式是一个完全平方式,-2k=276,解得k=42,故答案为:k=42【解析:42【分析】根据完全平方式的特点得到-2k=276,由此求出k【详解】解:多项式是一个完全平方式,-2k=276,解得k=42,故答案为:k=42【点睛】此题考查了已知完全平方式求参数,掌握完全平方式的特点:两个平方项的和与这两个平方项底数的2倍的和或差,这三项组成的式子
18、叫完全平方式1825【分析】设,得到关于k的等式,利用配方法和非负数的性质即可求解【详解】解:设,a-1=2k,b+1=3k,c-2=4k,即a=2k+1,b=3k-1,c=4k+2,a2+b解析:25【分析】设,得到关于k的等式,利用配方法和非负数的性质即可求解【详解】解:设,a-1=2k,b+1=3k,c-2=4k,即a=2k+1,b=3k-1,c=4k+2,a2+b2c2= (2k+1)2+(3k-1)2(4k+2)2=4k2+4k+1+9k2-6k+1-(16k2+16k+4)=4k2+4k+1+9k2-6k+1-16k2-16k-4=-3k2-18k-2=-3(k2+6k+9-9)-
19、2=-3(k+3) 2+25(k+3) 20,则-3(k+3) 20,a2+b2c2的最大值为25,故答案为:25【点睛】本题考查了比例的性质,完全平方公式,掌握配方法和非负数的性质是解题的关键192或6#6或2【分析】设BE=t,则BF=2t,使AEG与BEF全等,由A=B=90可知,分两种情况:情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;情况二:当B解析:2或6#6或2【分析】设BE=t,则BF=2t,使AEG与BEF全等,由A=B=90可知,分两种情况:情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;情况二:当BE=AE,BF=AG时,列方程解得t,可得AG【
20、详解】解:设BE=t,则BF=2t,AE=6-t,因为A=B=90,使AEG与BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,BF=AE,AB=6,2t=6-t,解得:t=2,AG=BE=t=2;情况二:当BE=AE,BF=AG时,BE=AE,AB=6,t=6-t,解得:t=3,AG=BF=2t=23=6,综上所述,AG=2或AG=6故答案为:2或6【点睛】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键三、解答题20(1);(2)【分析】(1)先提取公因式,再套用完全平方公式分解即可求解;(2)利用平方差公式分解,括号里再套用平方差公式进行分解即可.【详解】(1
21、)解:原式=, =;(2)解:解析:(1);(2)【分析】(1)先提取公因式,再套用完全平方公式分解即可求解;(2)利用平方差公式分解,括号里再套用平方差公式进行分解即可.【详解】(1)解:原式=, =;(2)解:原式=,=.【点睛】本题主要考查因式分解的方法,解决本题的关键是要熟练掌握因式分解的方法.21(1)x=1;(2),当x=0时,原式=1【分析】(1)先在方程左右两边同乘以(x-2)去分母,化为整式方程再解方程即可(2)先对括号内的分式进行通分,再合并,然后再乘以后面的倒数,再因式解析:(1)x=1;(2),当x=0时,原式=1【分析】(1)先在方程左右两边同乘以(x-2)去分母,化
22、为整式方程再解方程即可(2)先对括号内的分式进行通分,再合并,然后再乘以后面的倒数,再因式分解,再约分,最后代入使得分式有意义的x值可求出答案【详解】解:(1)方程两边乘(x-2)得,解得x=1,检验:当x=1时x-20,所以原分式方程解为x=1;(2)原式=,由分式有意义的条件可知:x不能取1,当x=0时,原式=0+1=1【点睛】本题考查分式的化简求值以及分式方程的解法,解题的关键是熟练运用分式方程的解法,分式的加减运算以及乘除运算法则,本题属于基础题型22见解析【分析】利用平行线的性质推知ABCDEF,由AAS证得ABCDEF,即可得出结论【详解】ABDE,ABCDEF,BECF,BCEF
23、,在解析:见解析【分析】利用平行线的性质推知ABCDEF,由AAS证得ABCDEF,即可得出结论【详解】ABDE,ABCDEF,BECF,BCEF,在ABC和DEF中,ABCDEF(AAS),ACDF【点睛】本题考查三角形全等的判定与性质以及平行线的性质;证明三角形全等是解题的关键23(1)130(2)(3)(4)(5)或【分析】(1)如图1所示,连接CP,证明1+2=ACB+DPE即可得到答案;(2)只需要证明即可得到答案;(3)利用三角形外解析:(1)130(2)(3)(4)(5)或【分析】(1)如图1所示,连接CP,证明1+2=ACB+DPE即可得到答案;(2)只需要证明即可得到答案;(
24、3)利用三角形外角的性质求解即可;(4)利用三角形外角的性质求解即可;(5)根据题意画出图形,利用三角形外角的性质求解即可(1)解:如图1所示,连接CP,1=DCP+CPD,2=CPE+ECP,1+2=DCP+CPD+CPE+ECP=ACB+DPE,1+2=130,故答案为:130;(2)解:1+CDP=180,2+CEP=180,1+2+CDP+CEP=360,C=70,CDP+CEP+C+DPE=360, 故答案为:;(3)解:设DP与BC交于F,故答案为:;(4)解:如图所示,连接CP,1=DCP+CPD,2=CPE+ECP,1+2=DCP+DPC+ECP+COD=ACB+360-DPE
25、,;(5)解:如图5-1所示,1=C+COD,2=P+POE,COD=POE, 如图5-2所示,1=P+POD,2=C+COE,POD=COE, 【点睛】本题主要考查了三角形外角的性质,对顶角相等等,熟知三角形外角的性质是解题的关键24(1)真分式,(2)或或或(3)【分析】(1)根据分子的次数小于分母的次数可得第一空的答案,再把分子化为 逆用分式的加减法运算可得第二空的答案;(2)先把原分式化为再结合为整数,为整解析:(1)真分式,(2)或或或(3)【分析】(1)根据分子的次数小于分母的次数可得第一空的答案,再把分子化为 逆用分式的加减法运算可得第二空的答案;(2)先把原分式化为再结合为整数
26、,为整数,可得或或或从而可得答案;(3)先把原分式化为再结合从而可得答案(1)解:根据新定义可得:是真分式,故答案为:真分式,(2)且为整数,为整数,或或或 解得:或或或(3)而 所以【点睛】本题考查的是新定义的理解,分式的加减运算的逆应用,不等式的基本性质,理解新定义,掌握分式的加减运算的逆运算是解本题的关键25(1),证明见解析;(2)甲两次所加油的平均单价为;乙两次所加油的平均单价为;乙两次加油的平均油价比较低【分析】(1)根据图形,结合阴影总分的面积的表示方法的不同,即可求解;(2)解析:(1),证明见解析;(2)甲两次所加油的平均单价为;乙两次所加油的平均单价为;乙两次加油的平均油价
27、比较低【分析】(1)根据图形,结合阴影总分的面积的表示方法的不同,即可求解;(2)根据平均油价=总价钱+总油量,进行求解即可;结合进行求解即可【详解】解:(1)猜想的结论为:(2)甲两次所加油的平均单价为;乙两次所加油的平均单价为,且,即所以,乙两次加油的平均油价比较低【点睛】本题主要考查整式的加减及完全平方公式,列代数式,理解清楚题意,找到相应的等量关系是解答的关键26(1);(2);(3)0,3【分析】(1)根据求差法比较大小,由材料1可知将结果用配方法变形即可得出结论.(2)根据材料(2)的方法,把代数式变形为,解答即可;(3)先将变形为,由材料解析:(1);(2);(3)0,3【分析】
28、(1)根据求差法比较大小,由材料1可知将结果用配方法变形即可得出结论.(2)根据材料(2)的方法,把代数式变形为,解答即可;(3)先将变形为,由材料(2)可知时(即x=0,)有最小值【详解】解:(1),所以;当时,由阅读材料1可得,所以;(2),所以;(3)x0,即:当时,有最小值,当x=0时,有最小值为3.【点睛】本题主要考查了分式的混合运算和配方法的应用读懂材料并加以运用是解题的关键27(1)见解析(2)(3)【分析】(1)先由AC=BC、ACB=90得到ABC=45,进而得到CBD=CDB=45,然后得到BCD=90,最后得到ACB+BCD=18解析:(1)见解析(2)(3)【分析】(1
29、)先由AC=BC、ACB=90得到ABC=45,进而得到CBD=CDB=45,然后得到BCD=90,最后得到ACB+BCD=180,即A、C、D三点共线;(2)先用含有t的式子表示CE和CF的长,然后根据CE=2CF列出方程求得t的值;(3)先由BCP=FCN、BCP+ECM=90,ECM+MEC=90得到MEC=FCN,然后结合全等三角形的性质列出方程求得t的值(1)证明:AC=BC,ACB=90,ABC=45,点B与点D关于直线l对称,BD直线l,BC=CD,直线lAB,BDAB,ABD=90,CBD=CDB=45,BCD=90,ACB+BCD=180,A、C、D三点共线;(2)解:AC=
30、10cm,BC=7cm,当点F沿DC方向时,0t3.5,CE=10-t,CF=7-2t,CE=2CF,10-t=2(7-2t),解得:t=(3)解:BCP=FCN,BCP+ECM=90,ECM+MEC=90,MEC=FCN,CEMCFN,当CE=CF时,CEMCFN,当点F沿DC路径运动时,10-t=7-2t,解得,t=-3,不合题意,当点F沿CB路径运动时,10-t=2t-7,解得,t=,当点F沿BC路径运动时,10-t=7-(2t-72),解得,t=11,第一个点到达终点时第二个点也停止运动点E从A点出发,以每秒1cm的速度沿AC路径运动,终点为CAC=10,0t10,t=11时,已停止运动综上所述,当t=秒时,CEMCFN【点睛】本题是三角形综合题目,考查的是全等三角形的判定和性质、等腰三角形的性质、等腰直角三角形的性质等知识,掌握全等三角形的判定定理和性质定理,灵活运用分类讨论思想是解题的关键