资源描述
八年级上册压轴题模拟数学质量检测试题附答案
1.(初步探索)(1)如图:在四边形中,,,、分别是、上的点,且,探究图中、、之间的数量关系.
(1)(1)小明同学探究此问题的方法是:延长到点,使.连接,先证明,再证明,可得出结论,他的结论应是_____________;
(2)(灵活运用)(2)如图2,若在四边形中,,,、分别是、上的点,且,上述结论是否仍然成立,并说明理由;
2.在平面直角坐标系中,A(a,0),B(0,b)分别是x轴负半轴和y轴正半轴上一点,点C与点A关于y轴对称,点P是x轴正半轴上C点右侧一动点.
(1)当2a2+4ab+4b2+2a+1=0时,求A,B的坐标;
(2)当a+b=0时,
①如图1,若D与P关于y轴对称,PE⊥DB并交DB延长线于E,交AB的延长线于F,求证:PB=PF;
②如图2,把射线BP绕点B顺时针旋转45o,交x轴于点Q,当CP=AQ时,求∠APB的大小.
3.如图1,在平面直角坐标系中,点A、B分别在x、y轴上,以AB为边作等腰直角三角形ABC,使,点C在第一象限.
(1)若点A(a,0),B(0,b),且a、b满足,则______,_____,点C的坐标为_________;
(2)如图2,过点C作轴于点D,BE平分,交x轴于点E,交CD于点F,交AC于点G,求证:CG垂直平分EF;
(3)试探究(2)中OD,OE与DF之间的关系,并说明理由.
4.以点为顶点作等腰,等腰,其中,如图1所示放置,使得一直角边重合,连接、.
(1)试判断、的数量关系,并说明理由;
(2)延长交于点试求的度数;
(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.
5.在平面直角坐标系中,点A在x轴的负半轴上,点B在y轴的正半轴上,点A与点C关于y轴对称.
(1)如图1,OA=OB,AF平分∠BAC交BC于F,BE⊥AF交AC于E,请直接写出EF与EC的数量关系为 ;
(2)如图2,AF平分∠BAC交BC于F,若AF=2OB,求∠ABC的度数;
(3)如图3,OA=OB,点G在BO的垂直平分线上,作∠GOH=45°交BA的延长线于H,连接GH,试探究OG与GH的数量和位置关系.
6.如图,在△ABC中,点D为直线BC上一动点,∠DAE=90°,AD=AE.
(1)如果∠BAC=90°,AB=AC.
①如图1,当点D在线段BC上时,线段CE与BD的位置关系为__________,数量关系为__________;
②如图2,当点D在线段BC的延长线上时,①中的结论是否仍然成立?请说明理由;
(2)如图3,若△ABC是锐角三角形,∠ACB=45°,当点D在线段BC上运动时,证明:CE⊥BD.
7.方法探究:
已知二次多项式,我们把代入多项式,发现,由此可以推断多项式中有因式(x+3).设另一个因式为(x+k),多项式可以表示成,则有,因为对应项的系数是对应相等的,即,解得,因此多项式分解因式得:.我们把以上分解因式的方法叫“试根法”.
问题解决:
(1)对于二次多项式,我们把x= 代入该式,会发现成立;
(2)对于三次多项式,我们把x=1代入多项式,发现,由此可以推断多项式中有因式(),设另一个因式为(),多项式可以表示成,试求出题目中a,b的值;
(3)对于多项式,用“试根法”分解因式.
8.已知:为的中线,分别以和为一边在的外部作等腰三角形和等腰三角形,且,连接,.
(1)如图1,若,求的度数.
(2)如图1,求证:.
(3)如图2,设交于点,交于点与交于点,若点为中点,且,请探究和的数量关系,并直接写出答案(不需要证明).
【参考答案】
2.(1)(初步探索)结论:∠BAE+∠FAD=∠EAF;
(2)(灵活运用)成立,理由见解析
【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定△ABE≌△ADG,进而得出∠BAE=∠D
解析:(1)(初步探索)结论:∠BAE+∠FAD=∠EAF;
(2)(灵活运用)成立,理由见解析
【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF,据此得出结论;
(2)延长FD到点G,使DG=BE,连接AG,先判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.
(1)
解:∠BAE+∠FAD=∠EAF.
理由:如图1,延长FD到点G,使DG=BE,连接AG,
∵,
∴,
∵DG=BE,,
∴△ABE≌△ADG,
∴∠BAE=∠DAG,AE=AG,
∵EF=BE+FD,DG=BE,
∴,且AE=AG,AF=AF,
∴△AEF≌△AGF,
∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.
故答案为:∠BAE+∠FAD=∠EAF;
(2)
如图2,延长FD到点G,使DG=BE,连接AG,
∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,
∴∠B=∠ADG,
又∵AB=AD,
∴△ABE≌△ADG(SAS),
∴∠BAE=∠DAG,AE=AG,
∵EF=BE+FD=DG+FD=GF,AF=AF,
∴△AEF≌△AGF(SSS),
∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF
【点睛】本题考查了全等三角形的判定以及性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形.解题时注意:同角的补角相等.
3.(1);(2)①见解析;②∠APB=22.5°
【分析】(1)利用非负数的性质求解即可;
(2)①想办法证明∠PBF=∠F,可得结论;②如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴
解析:(1);(2)①见解析;②∠APB=22.5°
【分析】(1)利用非负数的性质求解即可;
(2)①想办法证明∠PBF=∠F,可得结论;②如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H,可得等腰直角△BQF,证明△FQH≌△QBO(AAS),再证明FQ=FP即可解决问题.
【详解】解:(1)∵2a2+4ab+4b2+2a+1=0,
∴(a+2b)2+(a+1)2=0,
∵(a+2b)2≥0 ,(a+1)2≥0,
∴a+2b=0,a+1=0,
∴a=﹣1,b=,
∴A(﹣1,0),B(0,).
(2)①证明:如图1中,
∵a+b=0,
∴a=﹣b,
∴OA=OB,
又∵∠AOB=90°,
∴∠BAO=∠ABO=45°,
∵D与P关于y轴对称,
∴BD=BP,
∴∠BDP=∠BPD,
设∠BDP=∠BPD=α,
则∠PBF=∠BAP+∠BPA=45°+α,
∵PE⊥DB,
∴∠BEF=90°,
∴∠F=90°﹣∠EBF,
又∠EBF=∠ABD=∠BAO﹣∠BDP=45°﹣α,
∴∠F=45°+α,
∴∠PBF=∠F,
∴PB=PF.
②解:如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H.可得等腰直角△BQF,
∵∠BOQ=∠BQF=∠FHQ=90°,
∴∠BQO+∠FQH=90°,∠FQH+∠QFH=90°,
∴∠BQO=∠QFH,
∵QB=QF,
∴△FQH≌△QBO(AAS),
∴HQ=OB=OA,
∴HO=AQ=PC,
∴PH=OC=OB=QH,
∴FQ=FP,
又∠BFQ=45°,
∴∠APB=22.5°.
【点睛】本题考查完全平方公式、实数的非负性、全等三角形的判定与性质、等腰直角三角形的判定与性质,解题的关键是综合运用相关知识解题.
4.(1),;C(8,4);
(2)证明见解析;
(3),理由见解析.
【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D,
证明,进一步可求出点C坐标;
(2)利用已知证明,,再证
解析:(1),;C(8,4);
(2)证明见解析;
(3),理由见解析.
【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D,
证明,进一步可求出点C坐标;
(2)利用已知证明,,再证明,得到,,利用平行性质得到,进一步得,再利用HL定理证明,可得,即可证明CG垂直平分EF;
(3)证明得到,,又由(2)可知,进一步可得.
(1)
解:∵,即:,
∴,,
作轴交于点D,
∵,,
∴,
在和中,
∴,
∴,,
∴,即.
(2)
证明:∵,BE平分,
∴,,
在和中,
∴,
∴,,
∵,
∴,
∴,
∴,
∴,
在和中,
∴,
∴,即CG垂直平分EF.
(3)
解:,理由如下:
∵,
,
∴,
在和中,
∴,
∴,,
∵,
∴,
又由(2)可知,
∴,即.
【点睛】本题考查等腰直角三角形的性质,全等三角形的判定和性质,绝对值非负性,垂直平分线的判定,平行线的性质,坐标与图形.本题综合性较强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键.
5.(1)BD=CE,理由见解析;(2)90°;(3)成立,理由见解析.
【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△
解析:(1)BD=CE,理由见解析;(2)90°;(3)成立,理由见解析.
【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△AEC,则BD=CE;
(2)由△ADB≌△AEC得到∠ACE=∠DBA,利用三角形内角和定理可得到∠BFC=180°-∠ACE-∠CDF=180°-∠DBA-∠BDA=∠DAB=90°;
(3)与(1)一样可证明△ADB≌△AEC,得到BD=CE,∠ACE=∠DBA,利用三角形内角和定理得到∠BFC=∠DAB=90°.
【详解】(1)∵△ABC、△ADE是等腰直角三角形,
∴AB=AC,∠BAD=∠EAC=90°,AD=AE,
∵在△ADB和△AEC中,
∴△ADB≌△AEC(SAS),∴BD=CE;
(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,
而在△CDF中,∠BFC=180°-∠ACE-∠CDF,
又∵∠CDF=∠BDA,
∴∠BFC=180°-∠DBA-∠BDA=∠DAB=90°;
(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:
∵△ABC、△ADE是等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠EAD=90°,
∵∠BAC+∠CAD=∠EAD+∠CAD,
∴∠BAD=∠CAE,
在△ADB和△AEC中,
,
∴△ADB≌△AEC(SAS),
∴BD=CE,∠ACE=∠DBA,
∴∠BFC=∠DAB=90°.
【点睛】本题考查全等三角形的判定与性质.判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,熟知判定方法并根据题目条件选择合适的方法进行解答.
6.(1)EF=EC
(2)72°
(3)GH=GO,GH⊥GO
【分析】(1)如图1中,设AF交BE于点J.首先证明AB=AE,再证明∠AEF=∠ABF=90°,可得结论;
(2)如图2中,取
解析:(1)EF=EC
(2)72°
(3)GH=GO,GH⊥GO
【分析】(1)如图1中,设AF交BE于点J.首先证明AB=AE,再证明∠AEF=∠ABF=90°,可得结论;
(2)如图2中,取CF的中点T,连接OT.由OA=OC,BO⊥AC,推出BA=BC,推出∠BAC=∠BCA,∠ABO=∠CBO,设∠BAC=∠BCA=2α,利用三角形内角和定理,构建方程求解即可;
(3)结论:OG=GH,OG⊥GH.如图3中,连接GB,在BA上取一点H′,使得GB=GH′,连接OH′,设AB交DG于点W,交OG于点K,连接OW.证明∠GOH′=GOH=45°,推出点H与点H′重合,可得结论.
(1)解:(1)结论:EF=EC.理由:如图1中,设AF交BE于点J.∵AF平分∠BAC,∴∠BAF=∠CAF,∵BE⊥AF,∴∠BAF+∠ABE=90°,∠CAF+∠AEB=90°,∴∠ABE=∠AEB,∴AB=AE,∵A,C关于y轴对称,∴OA=OC,∵OA=OB,∴OA=OB=OC,∴∠OAB=∠OBA=45°,∠OCB=∠OBC=45°,∴∠ABC=90°,在△ABF和△AEF中,,∴△ABF≌△AEF(SAS),∴∠AEF=∠ABF=90°,∴∠CEF=90°,∴∠ECF=∠EFC=45°,∴EF=EC;
(2)解:如图2中,取CF的中点T,连接OT.∵AO=OC,FT=TC,∴OT∥AF,OT=AF,∵AF=2OB,∴OB=OT,∴∠OBT=∠OTB,∵OA=OC,BO⊥AC,∴BA=BC,∴∠BAC=∠BCA,∠ABO=∠CBO,设∠BAC=∠BCA=2α,∵AF平分∠BAC,∴∠BAF=∠CAF=α,∵OT∥AF,∴∠TOC=∠CAF=α,∴∠OBT=∠OTB=∠TOC+∠TCO=3α,∵∠OBC+∠OCB=90°,∴5α=90°,∴α=18°,∴∠OBC=36°,∴∠ABC=2∠OBC=72°;
(3)解:结论:OG=GH,OG⊥GH.理由:如图3中,连接GB,在BA上取一点H′,使得GB=GH′,连接OH′,设AB交DG于点W,交OG于点K,连接OW.设∠OGB=m,∠OGH′=n,∵GD垂直平分线段OB,∴GB=GO,∠DGB=∠DGO=m,∵GB=GO=GH′,∴∠GH′O=(180°-n)=90°-n,∠GH′B=(180°-m-n)=90°-m-n,∴∠KH′O=∠GH′O-∠GH′B=90°-n-(90°-m-n)=m,∴∠KH′O=∠KGW,∵∠GKW=∠H′KO,∴∠H′OK=∠GWK,∵DG∥OA,∴∠GWK=∠OAB=45°,∴∠COH′=45°,∵∠COH=45°,∴∠COH=∠COH′,∴点H与点H′重合,∴OG=GH,∴∠GHO=∠GOH=45°,∴∠OGH=90°,∴GH=GO,GH⊥GO.
【点睛】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,等腰三角形的性质等知识,第三个问题比较难,采用了同一法解决问题.
7.(1)①CE⊥BD;CE=BD;②结论仍成立,理由见解析;
(2)证明见解析.
【分析】(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角
解析:(1)①CE⊥BD;CE=BD;②结论仍成立,理由见解析;
(2)证明见解析.
【分析】(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;
②先根据“SAS”证明△ABD≌△ACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;
(2)先过点A作AG⊥AC交BC于点G,画出符合要求的图形,再结合图形判定△GAD≌△CAE,得出对应角相等,即可得出结论.
(1)
①∵∠BAD=90°-∠DAC,∠CAE=90°-∠DAC,
∴∠BAD=∠CAE.
又 BA=CA,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠ACE=∠B=45°,CE=BD.
∵∠ACB=∠B=45°,
∴∠ECB=45°+45°=90°,
即 CE⊥BD.
故答案为:CE⊥BD;CE=BD.
②当点D在BC的延长线上时,①的结论仍成立.
∵∠DAE=90°,∠BAC=90°,
∴∠DAE=∠BAC,
∴∠DAB=∠EAC,
又AB=AC,AD=AE,
∴△DAB≌△EAC(SAS),
∴CE=BD,∠ACE=∠ABD.
∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ACE=45°,
∴∠BCE=∠ACB+∠ACE=90°,
即 CE⊥BD;
(2)
证明:过点A作AG⊥AC交BC于点G,
∵∠ACB=45°,
∴∠AGC=45°,
∴AC=AG,
即△ACG是等腰直角三角形,
∵∠GAD+∠DAC=90°=∠CAE+∠DAC,
∴∠GAD=∠CAE,
又∵DA=EA,
∴△GAD≌△CAE(SAS),
∴∠ACE=∠AGD=45°,
∴∠BCE=∠ACB+∠ACE=90°,
即CE⊥BD.
【点睛】此题为三角形综合题,主要考查了全等三角形的判定与性质及等腰直角三角形的性质,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等,对应角相等进行求解.
8.(1)±2
(2)a=0,b=-3;
(3)
【分析】(1)将x=±2代入即可;
(2)由题意得x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,再由系数关系求a、b即可;
(
解析:(1)±2
(2)a=0,b=-3;
(3)
【分析】(1)将x=±2代入即可;
(2)由题意得x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,再由系数关系求a、b即可;
(3)多项式有因式(x-2),设另一个因式为(x2+ax+b),则x3+4x2-3x-18=x3+(a-2)x2-(2a-b)x-2b,再由系数关系求a、b即可.
(1)
解:当x=±2时,x2-4=0,
故答案为:±2;
(2)
解:由题意可知x3-x2-3x+3=(x-1)(x2+ax+b),
∴x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,
∴1-a=1,b=-3,
∴a=0,b=-3;
(3)
解:当x=2时,x3+4x2-3x-18=8+16-6-18=0,
∴多项式有因式(x-2),
设另一个因式为(x2+ax+b),
∴x3+4x2-3x-18=(x-2)(x2+ax+b),
∴x3+4x2-3x-18=x3+(a-2)x2-(2a-b)x-2b,
∴a-2=4,2b=18,
∴a=6,b=9,
∴x3+4x2-3x-18=(x-2)(x2+6x+9)=(x-2)(x+3)2.
【点睛】本题考查因式分解的意义,理解“试根法”的本质,多项式乘多项式的正确展开是解题的关键.
9.(1)∠BAC=50°;
(2)见解析;
(3)
【分析】(1)利用三角形内角和定理求出∠EAB和∠CAF,再根据构建方程即可解决问题;
(2)延长AD至H,使DH=AD,连接BH,想办法证
解析:(1)∠BAC=50°;
(2)见解析;
(3)
【分析】(1)利用三角形内角和定理求出∠EAB和∠CAF,再根据构建方程即可解决问题;
(2)延长AD至H,使DH=AD,连接BH,想办法证明△ABH≌△EAF即可解决问题;
(3)先证明△ACD≌△FAG,推出∠ACD=∠FAG,再证明∠BCF=150°即可.
(1)
∵AE=AB,
∴∠AEB=∠ABE=65°,
∴∠EAB=50°,
∵AC=AF,
∴∠ACF=∠AFC=75°,
∴∠CAF=30°,
∵∠EAF+∠BAC=180°,
∴∠EAB+2∠ABC+∠FAC=180°,
∴50°+2∠BAC+30°=180°,
∴∠BAC=50°.
(2)
证明:延长AD至H,使DH=AD,连接BH,
∵EF=2AD,
∴AH=EF,
在△BDH和△CDA中,
,
∴△BDH≌△CDA,
∴HB=AC=AF,∠BHD=∠CAD,
∴AC∥BH,
∴∠ABH+∠BAC=180°,
∵∠EAF+∠BAC=180°,
∴∠EAF=∠ABH,
在△ABH和△EAF中,
,
∴△ABH≌△EAF,
∴∠AEF=∠ABH,EF=AH=2AD,
(3)
结论:∠GAF-∠CAF=60°.
由(1)得,AD=EF,又点G为EF中点,
∴EG=AD,
在△EAG和△ABD中,
,
∴△EAG≌△ABD,
∴∠EAG=∠ABC=60°,
∴△AEB是等边三角形,
∴∠ABE=60°,
∴∠CBM=60°,
在△ACD和△FAG中,
,
∴△ACD≌△FAG,
∴∠ACD=∠FAG,
∵AC=AF,∴∠ACF=∠AFC,
在四边形ABCF中,∠ABC+∠BCF+∠CFA+∠BAF=360°,
∴60°+2∠BCF=360°,
∴∠BCF=150°,
∴∠BCA+∠ACF=150°,
∴∠GAF+(180°-∠CAF)=150°,
∴∠GAF-∠CAF=60°.
.
【点睛】本题考查三角形综合题,涉及全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
展开阅读全文