收藏 分销(赏)

八年级上册压轴题模拟数学质量检测试题附答案[003].doc

上传人:a199****6536 文档编号:1861401 上传时间:2024-05-10 格式:DOC 页数:16 大小:454.54KB
下载 相关 举报
八年级上册压轴题模拟数学质量检测试题附答案[003].doc_第1页
第1页 / 共16页
八年级上册压轴题模拟数学质量检测试题附答案[003].doc_第2页
第2页 / 共16页
八年级上册压轴题模拟数学质量检测试题附答案[003].doc_第3页
第3页 / 共16页
八年级上册压轴题模拟数学质量检测试题附答案[003].doc_第4页
第4页 / 共16页
八年级上册压轴题模拟数学质量检测试题附答案[003].doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、八年级上册压轴题模拟数学质量检测试题附答案1(初步探索)(1)如图:在四边形中,、分别是、上的点,且,探究图中、之间的数量关系(1)(1)小明同学探究此问题的方法是:延长到点,使连接,先证明,再证明,可得出结论,他的结论应是_;(2)(灵活运用)(2)如图2,若在四边形中,、分别是、上的点,且,上述结论是否仍然成立,并说明理由;2在平面直角坐标系中,A(a,0),B(0,b)分别是x轴负半轴和y轴正半轴上一点,点C与点A关于y轴对称,点P是x轴正半轴上C点右侧一动点(1)当2a2+4ab+4b2+2a+10时,求A,B的坐标;(2)当a+b0时,如图1,若D与P关于y轴对称,PEDB并交DB延

2、长线于E,交AB的延长线于F,求证:PBPF;如图2,把射线BP绕点B顺时针旋转45o,交x轴于点Q,当CPAQ时,求APB的大小3如图1,在平面直角坐标系中,点A、B分别在x、y轴上,以AB为边作等腰直角三角形ABC,使,点C在第一象限(1)若点A(a,0),B(0,b),且a、b满足,则_,_,点C的坐标为_;(2)如图2,过点C作轴于点D,BE平分,交x轴于点E,交CD于点F,交AC于点G,求证:CG垂直平分EF;(3)试探究(2)中OD,OE与DF之间的关系,并说明理由4以点为顶点作等腰,等腰,其中,如图1所示放置,使得一直角边重合,连接、(1)试判断、的数量关系,并说明理由;(2)延

3、长交于点试求的度数;(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由5在平面直角坐标系中,点A在x轴的负半轴上,点B在y轴的正半轴上,点A与点C关于y轴对称(1)如图1,OA=OB,AF平分BAC交BC于F,BEAF交AC于E,请直接写出EF与EC的数量关系为 ;(2)如图2,AF平分BAC交BC于F,若AF=2OB,求ABC的度数;(3)如图3,OA=OB,点G在BO的垂直平分线上,作GOH=45交BA的延长线于H,连接GH,试探究OG与GH的数量和位置关系6如图,在ABC中,点D为直线BC上一动点,DAE90,ADAE(1)如果BAC90,ABAC如图1

4、,当点D在线段BC上时,线段CE与BD的位置关系为_,数量关系为_;如图2,当点D在线段BC的延长线上时,中的结论是否仍然成立?请说明理由;(2)如图3,若ABC是锐角三角形,ACB=45,当点D在线段BC上运动时,证明:CEBD7方法探究:已知二次多项式,我们把代入多项式,发现,由此可以推断多项式中有因式(x3)设另一个因式为(xk),多项式可以表示成,则有,因为对应项的系数是对应相等的,即,解得,因此多项式分解因式得:我们把以上分解因式的方法叫“试根法”问题解决:(1)对于二次多项式,我们把x 代入该式,会发现成立;(2)对于三次多项式,我们把x1代入多项式,发现,由此可以推断多项式中有因

5、式(),设另一个因式为(),多项式可以表示成,试求出题目中a,b的值;(3)对于多项式,用“试根法”分解因式8已知:为的中线,分别以和为一边在的外部作等腰三角形和等腰三角形,且,连接,(1)如图1,若,求的度数(2)如图1,求证:(3)如图2,设交于点,交于点与交于点,若点为中点,且,请探究和的数量关系,并直接写出答案(不需要证明)【参考答案】2(1)(初步探索)结论:BAEFADEAF;(2)(灵活运用)成立,理由见解析【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定ABEADG,进而得出BAE=D解析:(1)(初步探索)结论:BAEFADEAF;(2)(灵活运用)成立,理由见解

6、析【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定ABEADG,进而得出BAE=DAG,AE=AG,再判定AEFAGF,可得出EAF=GAF=DAG+DAF=BAE+DAF,据此得出结论;(2)延长FD到点G,使DG=BE,连接AG,先判定ABEADG,进而得出BAE=DAG,AE=AG,再判定AEFAGF,可得出EAF=GAF=DAG+DAF=BAE+DAF(1)解:BAEFADEAF理由:如图1,延长FD到点G,使DGBE,连接AG,DGBE,ABEADG,BAEDAG,AEAG,EF=BE+FD,DGBE,且AEAG,AFAF,AEFAGF,EAFGAFDAGDAFBAEDA

7、F故答案为:BAEFADEAF;(2)如图2,延长FD到点G,使DGBE,连接AG, BADF180,ADGADF180,BADG,又ABAD,ABEADG(SAS),BAEDAG,AEAG,EFBEFDDGFDGF,AFAF,AEFAGF(SSS),EAFGAFDAGDAFBAEDAF【点睛】本题考查了全等三角形的判定以及性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形解题时注意:同角的补角相等3(1);(2)见解析;APB22.5【分析】(1)利用非负数的性质求解即可;(2)想办法证明PBFF,可得结论;如图2中,过点Q作QFQB交PB于F,过

8、点F作FHx轴解析:(1);(2)见解析;APB22.5【分析】(1)利用非负数的性质求解即可;(2)想办法证明PBFF,可得结论;如图2中,过点Q作QFQB交PB于F,过点F作FHx轴于H,可得等腰直角BQF,证明FQHQBO(AAS),再证明FQFP即可解决问题【详解】解:(1)2a2+4ab+4b2+2a+10,(a+2b)2+(a+1)20,(a+2b)20 ,(a+1)20,a+2b0,a+10,a1,b,A(1,0),B(0,)(2)证明:如图1中,a+b0,ab,OAOB,又AOB90,BAOABO45,D与P关于y轴对称,BDBP,BDPBPD,设BDPBPD,则PBFBAP+

9、BPA45+,PEDB,BEF90,F90EBF,又EBFABDBAOBDP45,F45+,PBFF,PBPF解:如图2中,过点Q作QFQB交PB于F,过点F作FHx轴于H可得等腰直角BQF,BOQBQFFHQ90,BQO+FQH90,FQH+QFH90,BQOQFH,QBQF,FQHQBO(AAS),HQOBOA,HOAQPC,PHOCOBQH,FQFP, 又BFQ45,APB22.5【点睛】本题考查完全平方公式、实数的非负性、全等三角形的判定与性质、等腰直角三角形的判定与性质,解题的关键是综合运用相关知识解题4(1),;C(8,4);(2)证明见解析;(3),理由见解析【分析】(1)利用绝

10、对值的非负性求出a,b的值,作轴交于点D,证明,进一步可求出点C坐标;(2)利用已知证明,再证解析:(1),;C(8,4);(2)证明见解析;(3),理由见解析【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D,证明,进一步可求出点C坐标;(2)利用已知证明,再证明,得到,利用平行性质得到,进一步得,再利用HL定理证明,可得,即可证明CG垂直平分EF;(3)证明得到,又由(2)可知,进一步可得(1)解:,即:,作轴交于点D,在和中,即(2)证明:,BE平分,在和中,在和中,即CG垂直平分EF(3)解:,理由如下:,在和中,又由(2)可知,即【点睛】本题考查等腰直角三角形的性质,全等三

11、角形的判定和性质,绝对值非负性,垂直平分线的判定,平行线的性质,坐标与图形本题综合性较强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键5(1)BD=CE,理由见解析;(2)90;(3)成立,理由见解析.【分析】(1)根据等腰直角三角形的性质得到AB=AC,BAD=EAC=90,AD=AE,利用“SAS”可证明ADB解析:(1)BD=CE,理由见解析;(2)90;(3)成立,理由见解析.【分析】(1)根据等腰直角三角形的性质得到AB=AC,BAD=EAC=90,AD=AE,利用“SAS”可证明ADBAEC,则BD=CE;(2)由ADBAEC得到ACE=DBA,利用三角形内角和定理可得到B

12、FC=180-ACE-CDF=180-DBA-BDA=DAB=90;(3)与(1)一样可证明ADBAEC,得到BD=CE,ACE=DBA,利用三角形内角和定理得到BFC=DAB=90【详解】(1)ABC、ADE是等腰直角三角形,AB=AC,BAD=EAC=90,AD=AE,在ADB和AEC中,ADBAEC(SAS),BD=CE;(2)ADBAEC,ACE=ABD,而在CDF中,BFC=180-ACE-CDF,又CDF=BDA,BFC=180-DBA-BDA=DAB=90;(3)BD=CE成立,且两线段所在直线互相垂直,即BFC=90理由如下:ABC、ADE是等腰直角三角形,AB=AC,AD=A

13、E,BAC=EAD=90,BAC+CAD=EAD+CAD,BAD=CAE,在ADB和AEC中,ADBAEC(SAS),BD=CE,ACE=DBA,BFC=DAB=90【点睛】本题考查全等三角形的判定与性质.判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,熟知判定方法并根据题目条件选择合适的方法进行解答6(1)EFEC(2)72(3)GHGO,GHGO【分析】(1)如图1中,设AF交BE于点J首先证明AB=AE,再证明AEF=ABF=90,可得结论;(2)如图2中,取解析:(1)EFEC(2)72(3)GHGO,GHGO【分析】(1)如图1中,设AF交BE于点J首先证明AB

14、=AE,再证明AEF=ABF=90,可得结论;(2)如图2中,取CF的中点T,连接OT由OA=OC,BOAC,推出BA=BC,推出BAC=BCA,ABO=CBO,设BAC=BCA=2,利用三角形内角和定理,构建方程求解即可;(3)结论:OG=GH,OGGH如图3中,连接GB,在BA上取一点H,使得GB=GH,连接OH,设AB交DG于点W,交OG于点K,连接OW证明GOH=GOH=45,推出点H与点H重合,可得结论(1)解:(1)结论:EF=EC理由:如图1中,设AF交BE于点JAF平分BAC,BAF=CAF,BEAF,BAF+ABE=90,CAF+AEB=90,ABE=AEB,AB=AE,A,

15、C关于y轴对称,OA=OC,OA=OB,OA=OB=OC,OAB=OBA=45,OCB=OBC=45,ABC=90,在ABF和AEF中,ABFAEF(SAS),AEF=ABF=90,CEF=90,ECF=EFC=45,EF=EC;(2)解:如图2中,取CF的中点T,连接OTAO=OC,FT=TC,OTAF,OT=AF,AF=2OB,OB=OT,OBT=OTB,OA=OC,BOAC,BA=BC,BAC=BCA,ABO=CBO,设BAC=BCA=2,AF平分BAC,BAF=CAF=,OTAF,TOC=CAF=,OBT=OTB=TOC+TCO=3,OBC+OCB=90,5=90,=18,OBC=36

16、,ABC=2OBC=72;(3)解:结论:OG=GH,OGGH理由:如图3中,连接GB,在BA上取一点H,使得GB=GH,连接OH,设AB交DG于点W,交OG于点K,连接OW设OGB=m,OGH=n,GD垂直平分线段OB,GB=GO,DGB=DGO=m,GB=GO=GH,GHO=(180-n)=90-n,GHB=(180-m-n)=90-m-n,KHO=GHO-GHB=90-n-(90-m-n)=m,KHO=KGW,GKW=HKO,HOK=GWK,DGOA,GWK=OAB=45,COH=45,COH=45,COH=COH,点H与点H重合,OG=GH,GHO=GOH=45,OGH=90,GH=G

17、O,GHGO【点睛】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,等腰三角形的性质等知识,第三个问题比较难,采用了同一法解决问题7(1)CEBD;CE=BD;结论仍成立,理由见解析;(2)证明见解析【分析】(1)根据BAD=CAE,BA=CA,AD=AE,运用“SAS”证明ABDACE,根据全等三角解析:(1)CEBD;CE=BD;结论仍成立,理由见解析;(2)证明见解析【分析】(1)根据BAD=CAE,BA=CA,AD=AE,运用“SAS”证明ABDACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;先根据“SAS”证明ABDACE,再根据

18、全等三角形性质得出对应边相等,对应角相等,即可得到中的结论仍然成立;(2)先过点A作AGAC交BC于点G,画出符合要求的图形,再结合图形判定GADCAE,得出对应角相等,即可得出结论(1)BAD=90DAC,CAE=90DAC,BAD=CAE又 BA=CA,AD=AE,ABDACE(SAS),ACE=B=45,CE=BDACB=B=45,ECB=45+45=90,即 CEBD故答案为:CEBD;CE=BD当点D在BC的延长线上时,的结论仍成立DAE=90,BAC=90,DAE=BAC,DAB=EAC,又AB=AC,AD=AE,DABEAC(SAS),CE=BD,ACE=ABDBAC=90,AB

19、=AC,ABC=45,ACE=45,BCE=ACB+ACE=90,即 CEBD;(2)证明:过点A作AGAC交BC于点G,ACB=45,AGC=45,AC=AG,即ACG是等腰直角三角形,GAD+DAC=90=CAE+DAC,GAD=CAE,又DA=EA,GADCAE(SAS),ACE=AGD=45,BCE=ACB+ACE=90,即CEBD【点睛】此题为三角形综合题,主要考查了全等三角形的判定与性质及等腰直角三角形的性质,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等,对应角相等进行求解8(1)2(2)a=0,b=-3;(3)【分析】(1)将x=2代入即可;(2)由题意得x

20、3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,再由系数关系求a、b即可;(解析:(1)2(2)a=0,b=-3;(3)【分析】(1)将x=2代入即可;(2)由题意得x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,再由系数关系求a、b即可;(3)多项式有因式(x-2),设另一个因式为(x2+ax+b),则x3+4x2-3x-18=x3+(a-2)x2-(2a-b)x-2b,再由系数关系求a、b即可(1)解:当x=2时,x2-4=0,故答案为:2;(2)解:由题意可知x3-x2-3x+3=(x-1)(x2+ax+b),x3-x2-3x+3=x3-(1-a)x2-(a-b

21、)x-b,1-a=1,b=-3,a=0,b=-3;(3)解:当x=2时,x3+4x2-3x-18=8+16-6-18=0,多项式有因式(x-2),设另一个因式为(x2+ax+b),x3+4x2-3x-18=(x-2)(x2+ax+b),x3+4x2-3x-18=x3+(a-2)x2-(2a-b)x-2b,a-2=4,2b=18,a=6,b=9,x3+4x2-3x-18=(x-2)(x2+6x+9)=(x-2)(x+3)2【点睛】本题考查因式分解的意义,理解“试根法”的本质,多项式乘多项式的正确展开是解题的关键9(1)BAC=50;(2)见解析;(3)【分析】(1)利用三角形内角和定理求出EAB

22、和CAF,再根据构建方程即可解决问题;(2)延长AD至H,使DH=AD,连接BH,想办法证解析:(1)BAC=50;(2)见解析;(3)【分析】(1)利用三角形内角和定理求出EAB和CAF,再根据构建方程即可解决问题;(2)延长AD至H,使DH=AD,连接BH,想办法证明ABHEAF即可解决问题;(3)先证明ACDFAG,推出ACD=FAG,再证明BCF=150即可(1)AE=AB,AEB=ABE=65,EAB=50,AC=AF,ACF=AFC=75,CAF=30,EAF+BAC=180,EAB+2ABC+FAC=180,50+2BAC+30=180,BAC=50(2)证明:延长AD至H,使D

23、H=AD,连接BH,EF=2AD,AH=EF,在BDH和CDA中,BDHCDA,HB=AC=AF,BHD=CAD,ACBH,ABH+BAC=180,EAF+BAC=180,EAF=ABH,在ABH和EAF中,ABHEAF,AEF=ABH,EF=AH=2AD,(3)结论:GAF-CAF=60由(1)得,AD=EF,又点G为EF中点,EG=AD,在EAG和ABD中,EAGABD,EAG=ABC=60,AEB是等边三角形,ABE=60,CBM=60,在ACD和FAG中,ACDFAG,ACD=FAG,AC=AF,ACF=AFC,在四边形ABCF中,ABC+BCF+CFA+BAF=360,60+2BCF=360,BCF=150,BCA+ACF=150,GAF+(180-CAF)=150,GAF-CAF=60.【点睛】本题考查三角形综合题,涉及全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服