资源描述
人教版八年级下册数学期末试卷同步检测(Word版含答案)
一、选择题
1.当x=0时,下列式子有意义的是( )
A. B. C. D.
2.已知△ABC的三边a,b,c满足,则ABC的的面积为( )
A.12 B.6 C.15 D.10
3.下列各组条件中,不能判断一个四边形是平行四边形的是( )
A.一组对边相等且平行的四边形
B.两条对角线互相平分的四边形
C.一组对边平行另一组对边相等的四边形
D.两组对角分别相等的四边形
4.一组数据,,,,的中位数和平均数分别是( )
A.和 B.和 C.和 D.和
5.如图,四边形ABCD的对角线AC,BD相交于点O,AC⊥BD,E,F分别是AB,CD的中点,若AC=BD=2,则EF的长是( )
A.2 B. C. D.
6.如图,菱形ABCD中,,点E、F分别在边BC、CD上,且,则为( )
A. B. C. D.
7.如图,在三角形,,,是上中点,是射线上一点.是上一点,连接,,,点在上,连接,,,,则的长为( )
A. B.8 C. D.9
8.如图1,在矩形ABCD中,E是CD上一点,动点P从点A出发沿折线AE→EC→CB运动到点B时停止,动点Q从点A沿AB运动到点B时停止,它们的速度均为每秒1cm.如果点P、Q同时从点A处开始运动,设运动时间为x(s),△APQ的面积为ycm2,已知y与x的函数图象如图2所示,以下结论:①AB=5cm;②cos∠AED= ;③当0≤x≤5时,y=;④当x=6时,△APQ是等腰三角形;⑤当7≤x≤11时,y=.其中正确的有( )
A.2个 B.3个 C.4个 D.5个
二、填空题
9.若,则的平方根为________.
10.已知菱形ABCD的面积为24,AC=6,则AB=___.
11.长方形的一条对角线的长为10cm,一边长为6cm,它的面积是________cm2.
12.如图,把矩形纸片ABCD沿直线AE折叠,使点D落在BC边上的点F处,已知AB=6,BC=10,则线段CE的长为__________.
13.若正比例函数y=kx的图象经过点(2,﹣4),则k的值为_____.
14.如图,四边形ABCD的对角线AC、BD相交于点O,且OA=OC,OB=OD.请你添加一个适当的条件:______________,使四边形ABCD成为菱形.
15.A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发,如图,l1,l2表示两人离A地的距离:s(km)与时间t(h)的关系,则乙出发_____h两人恰好相距5千米.
16.函数y=kx与y=6–x的图像如图所示,则k=________.
三、解答题
17.(1)
(2)
18.如图,有一直立标杆,它的上部被风从B处吹折,杆顶C着地,离杆脚2m,修好后又被风吹折,因新断处D比前一次低0.5m,故杆顶E着地比前次远1m,求原标杆的高度.
19.如图,每个小正方形的边长都为1,AB的位置如图所示.
(1)在图中确定点C,请你连接CA,CB,使CB⊥BA,AC=5;
(2)在完成(1)后,在图中确定点D,请你连接DA,DC,DB,使CD=,AD=,直接写出BD的长.
20.如图,在▱ABCD中,过点D作DF⊥BC于点F,点E在边AD上,AE=CF,连结BE、CE.
(1)求证:四边形BFDE是矩形.
(2)若DE=AB,∠ABC=130°,求∠DEC的度数.
21.先阅读下列的解答过程,然后再解答:
形如的化简,只要我们找到两个正数a、b,使a+b=m,ab=n,使得,,那么便有:(a>b)
例如:化简
解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12
即,
∴=
(1)填空:= ,= ;
(2)化简:.
22.清明期间,某校计划组织八年级学生去树湘纪念馆参观,与某公交公司洽谈后,得知该公司有A,B两种不同型号客车,它们的载客量和租金如下表所示:
类别
A型客车
B型客车
载客量(人/辆)
50
30
租金(元/辆)
300
180
经计算,租用A,B型客车共15辆较为合理,设租用A型客车x辆,根据要求回答下列问题:
(1)用含x的代数式填写下表:
类别
车辆数(辆)
载客量(人)
租金(元)
A型客车
x
50x
300x
B型客车
15﹣x
(2)若租用A型客车的数量不小于B型客车数量的2倍,采用怎样的方案可以使租车总费用y最少,最少是多少?
23.如图①,C为线段BD上的一点,BC≠CD,分别以BC,BD为边在BD的上方作等边△ABC和等边△CDE,连接AE,F,G,H分别是BC,AE,CD的中点,连接FG,GH,FH.
(1)△FGH的形状是 ;
(2)将图①中的△CDE绕点C顺时针旋转,其他条件不变,(1)的结论是否成立?结合图②说明理由;
(3)若BC=,CD=4,将△CDE绕点C旋转一周,当A,E,D三点共线时,直接写出△FGH的周长.
24.将一矩形纸片放在平面直角坐标系中,为原点,点在轴上,点在轴上,,.如图1在边上取一点,将沿折叠,使点恰好落在边上,记作点:
(1)求点的坐标及折痕的长;
(2)如图2,在、边上选取适当的点、,将沿折叠,使点落在上,记为点,设,四边形的面积为.求:与之间的函数关系式;
(3)在线段上取两点、(点在点的左侧),且,求使四边形的周长最短的点、点的坐标.
25.如图正方形,点、、分别在、、上,与相交于点.
(1)如图1,当,
①求证:;
②平移图1中线段,使点与重合,点在延长线上,连接,取中点,连接,如图2,求证:;
(2)如图3,当,边长,,则的长为_________(直接写出结果).
26.等腰Rt△ABC,CA=CB,D在AB上,CD=CE,CD⊥CE.
(1)如图1,连接BE,求证:AD=BE.
(2)如图2,连接AE,CF⊥AE交AB于F,T为垂足,
①求证:FD=FB;
②如图3,若AE交BC于N,O为AB中点,连接OC,交AN于M,连FM、FN,当,求OF2+BF2的最小值.
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据零指数幂、分式有意义,二次根式有意义的条件进行判断即可;
【详解】
解:当x=0时, 没有意义,则没有意义;
当x=0时, ,则没有意义;
当x=0时,x-1=-1,则没有意义;
故选:C
【点睛】
本题考查了零指数幂、分式有意义,二次根式有意义的条件,熟练掌握相关知识是解题的关键
2.B
解析:B
【分析】
三个非负数的和为0,则它们都为0.根据此性质可得a、b、c的值,由勾股定理的逆定理可判断此三角形为直角三角形,从而可求得△ABC的面积.
【详解】
∵,,,且
∴,,
∴b-4=0,2c-6=0,3a-15=0
即b=4,c=3,a=5
∵
∴由勾股定理的逆定理可知,△ABC是直角三角形,且a是斜边
∴
故选:B.
【点睛】
本题考查了算术平方根、绝对值、平方的非负性,勾股定理的逆定理,三角形面积的计算等知识,关键是非负性的应用.
3.C
解析:C
【解析】
【分析】
根据平行四边形的判定方法分别对各个选项进行判断即可.
【详解】
A、∵一组对边相等且平行的四边形是平行四边形,
∴选项A不符合题意;
B、∵两条对角线互相平分的四边形是平行四边形,
∴选项B不符合题意;
C、∵一组对边平行另一组对边相等的四边形可能是平行四边形或等腰梯形,
∴选项C符合题意;
D、∵两组对角分别相等的四边形是平行四边形,
∴选项D不符合题意;
故选:C.
【点睛】
本题考查了平行四边形的判定.熟练掌握平行四边形的判定定理是解题关键.
4.B
解析:B
【解析】
【分析】
根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
【详解】
解:把这组数据按从小到大的顺序排列是:2,3,4,4,5,
故这组数据的中位数是:4.
平均数=(2+3+4+4+5)÷5=3.6.
故选:B.
【点睛】
本题考查了中位数的定义和平均数的求法,解题的关键是牢记定义,此题比较简单,易于掌握.
5.D
解析:D
【分析】
分别取的中点为,连接,利用中点四边形的性质可以推出,再根据,可以推导出四边形是正方形即可求解.
【详解】
解:分别取的中点为,连接,
分别是的中点,
,
又,
,
四边形是正方形,
,
故选:D.
【点睛】
本题考查了中点四边形的性质、正方形的判定及性质,解题的关键是作出适当的辅助线,利用题意证明出四边形是正方形.
6.C
解析:C
【解析】
【分析】
利用菱形的性质和等边三角形的判定和性质,根据SAS证明△BAE≌△CAF,即可求解.
【详解】
解:连接AC,
∵在菱形ABCD中,∠BAD=120°,
∴∠B=60°,AB=BC,
∴△ABC为等边三角形,
∴AB=AC,∠BCA=60°,∠ACD=120°-∠BCA=60°,
∵BE=CF,∠B=∠ACF=60°,AB=AC,
∴△BAE≌△CAF(SAS) ,
∴∠BAE=∠CAF,
∴∠EAC-∠BAE =∠EAC-∠CAF=60°,
即∴∠EAF=60°.
故选:C.
【点睛】
本题考查了菱形的性质、全等三角形判定与性质及等边三角形的判定和性质,求证△BAE≌△CAF是解题的关键,难度适中.
7.D
解析:D
【解析】
【分析】
延长EA到K,是的AK=AG,连接CK,先由勾股定理的逆定理可以得到△ABC是等腰直角三角形,∠BAC=90°,∠ACB=∠ABC=45°,由BF=FE,得到∠FBE=∠FEB,设∠BFE=x,则,然后证明CB=FC=FE,得到∠FBC=∠FCA,∠AFB=∠AFC则,即可证明,推出;设,证明△ABG≌△ACK,得到,,即可推出∠ECK=∠K,得到EK=EC,则,由此即可得到答案.
【详解】
解:延长EA到K,是的AK=AG,连接CK,
∵在三角形,,,
∴△ABC是等腰直角三角形,∠BAC=90°,
∴∠ACB=∠ABC=45°,
∵BF=FE,
∴∠FBE=∠FEB,
设∠BFE=x,则,
∵H是BC上中点,F是射线AH上一点,
∴AH⊥BC,
∴AH是线段BC的垂直平分线,∠FAC=45°,
∴CB=FC=FE,
∴∠FBC=∠FCA,∠AFB=∠AFC
∴,
∴,
∴,
∴,
∴,
∴,
设,
∵AG=AK,AB=AC,∠KAC=∠GAB=90°,
∴△ABG≌△ACK(SAS),
,,
∴,
∴∠ECK=∠K,
∴EK=EC,
∵,
∴,
∴,
故选D.
【点睛】
本题主要考查了勾股定理和勾股定理的逆定理,等腰三角形的性质与判定,线段垂直平分线的性质与判定,全等三角形的性质与判定,三角形内角和定理等等,熟知相关知识是解题的关键.
8.B
解析:B
【分析】
根据图中相关信息即可判断出正确答案.
【详解】
解:图2知:当 时y恒为10,
∴当 时,点Q运动恰好到点B停止,且当 时点P必在EC上,
故①正确;
∵当 时点P必在EC上,且当 时,y逐渐减小,
∴当 时,点Q在点B处,点P在点C处,此时
设 则
在 中,由勾股定理得:
解得:
故②正确;
当 时,由 知点P在AE上,过点P作 如图:
故③正确;
当 时,
不是等腰三角形,故④不正确;
当时,点P在BC上,点Q和点B重合,
故⑤ 不正确;
故选B.
【点睛】
本题主要考查了动点问题的函数图像,理解题意,读懂图像信息,灵活运用所学知识是解题关键,属于中考选择题中的压轴题.
二、填空题
9.±3.
【解析】
【分析】
根据二次根式有意义的条件求出x,进而求出y,根据平方根的概念解答即可.
【详解】
解:要使有意义,则x-3≥0,
同理,3-x≥0,
解得,x=3,
则y=6,
∴xy=18,
∵18的平方根是±3,
∴xy的平方根为±3,
故答案为:±3.
【点睛】
本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.
10.B
解析:5
【解析】
【分析】
根据菱形的面积等于对角线乘积的一半可求出另一条对角线BD的长.然后根据勾股定理即可求得边长.
【详解】
解:菱形ABCD的面积=AC•BD,
∵菱形ABCD的面积是24cm2,其中一条对角线AC长6cm,
∴另一条对角线BD的长=8cm;
∵OA=OC,OB=OD,
∴OA=3,OB=4,
又∵AC⊥BD,
∴由勾股定理得:,
故答案为:5
【点睛】
本题考查了菱形的性质.菱形被对角线分成4个全等的直角三角形,以及菱形的面积的计算,理解菱形的性质是关键.
11.48
【解析】
【分析】
先根据勾股定理求出长方形的另一条边,然后根据面积公式计算即可.
【详解】
解:∵长方形的一条对角线的长为10cm,一边长为6cm,
由勾股定理可知:长方形的另一条边=cm
∴长方形的面积为:6×8=48 cm2.
故答案为:48.
【点睛】
此题考查的是勾股定理和长方形的面积,掌握用勾股定理解直角三角形是解决此题的关键.
12.A
解析:
【分析】
由折叠可知,AD=AF,DE=EF,∠D=∠AFE=90°,在Rt△ABF中,由勾股定理得102=62+BF2,求出BF=8,CF=2,在Rt△EFC中,由勾股定理得(6﹣CE)2=CE2+22,求得CE=.
【详解】
解:在矩形ABCD中,AD=BC=10,∠D=90°,
由折叠可知,AD=AF,DE=EF,∠D=∠AFE=90°,
∵BC=10,
∴AF=10,
∵AB=6,
在Rt△ABF中,AF2=AB2+BF2,
∴102=62+BF2,
∴BF=8,
∴CF=2,
在Rt△EFC中,EF2=CE2+CF2,
∴(6﹣CE)2=CE2+22,
∴CE=,
故答案为.
【点睛】
本题考查折叠的性质,熟练掌握矩形的性质、折叠的性质,熟练应用勾股定理是解题的关键.
13.-2
【分析】
因为正比例函数y=kx的图象经过点(2,﹣4),代入解析式,解之即可求得k.
【详解】
解:∵正比例函数y=kx的图象经过点(2,﹣4),
∴﹣4=2k,
解得:k=﹣2.
故答案为:﹣2.
【点睛】
此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
14.A
解析:AB=AD.
【分析】
由条件OA=OC,AB=CD根据对角线互相平分的四边形是平行四边形可得四边形ABCD为平行四边形,再加上条件AB=AD可根据一组邻边相等的平行四边形是菱形进行判定.
【详解】
添加AB=AD,
∵OA=OC,OB=OD,
∴四边形ABCD为平行四边形,
∵AB=AD,
∴四边形ABCD是菱形,
故答案为AB=AD.
【点睛】
此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.
15.8或1
【分析】
分相遇前或相遇后两种情形分别列出方程即可解决问题.
【详解】
解:由题意可知,乙的函数图象是l2,
甲的速度是=30(km/h),乙的速度是=20(km/h).
设乙出发x小时两人
解析:8或1
【分析】
分相遇前或相遇后两种情形分别列出方程即可解决问题.
【详解】
解:由题意可知,乙的函数图象是l2,
甲的速度是=30(km/h),乙的速度是=20(km/h).
设乙出发x小时两人恰好相距5km.
由题意得:30(x+0.5)+20x+5=60或30(x+0.5)+20x﹣5=60,
解得x=0.8或1,
所以甲出发0.8小时或1小时两人恰好相距5km.
故答案为:0.8或1.
【点睛】
本题考查了一次函数的应用,解题的关键是读懂图象信息,灵活应用速度、路程、时间之间的关系解决问题.
16.2
【分析】
首先根据一次函数y=6﹣x与y=kx图像的交点横坐标为2,代入一次函数y=6﹣x求得交点坐标为(2,4),然后代入y=kx求得k值即可.
【详解】
∵一次函数y=6﹣x与y=kx图像的
解析:2
【分析】
首先根据一次函数y=6﹣x与y=kx图像的交点横坐标为2,代入一次函数y=6﹣x求得交点坐标为(2,4),然后代入y=kx求得k值即可.
【详解】
∵一次函数y=6﹣x与y=kx图像的交点横坐标为2,∴y=6﹣2=4,∴交点坐标为(2,4),代入y=kx,2k=4,解得:k=2.
故答案为2.
【点睛】
本题考查了两条直线平行或相交问题,解题的关键是交点坐标适合y=6﹣x与y=kx两个解析式.
三、解答题
17.(1);(2)
【分析】
(1)先计算二次根式的除法和乘法,再进行二次根式的加减运算;
(2)先化简最简二次根式,然后进行二次根式的乘法,最后合并同类二次根式即可.
【详解】
(1)原式
;
解析:(1);(2)
【分析】
(1)先计算二次根式的除法和乘法,再进行二次根式的加减运算;
(2)先化简最简二次根式,然后进行二次根式的乘法,最后合并同类二次根式即可.
【详解】
(1)原式
;
(2)原式
.
【点睛】
本题考查了二次根式的混合运算,掌握二次根式的运算法则并能正确进行运算是关键.
18.5米
【分析】
由题中条件,可设原标杆AB的高为x,进而再依据勾股定理建立方程,进而求解即可.
【详解】
解:依题意得AC=2,AE=3,
设原标杆的高为x,
∵∠A=90°,
∴由题中条件可得AB
解析:5米
【分析】
由题中条件,可设原标杆AB的高为x,进而再依据勾股定理建立方程,进而求解即可.
【详解】
解:依题意得AC=2,AE=3,
设原标杆的高为x,
∵∠A=90°,
∴由题中条件可得AB2+AC2=BC2,即AB2+22=(x﹣AB)2,
整理,得x2﹣2ABx=4,
同理,得(AB﹣0.5)2+32=(x﹣AB+0.5)2,
整理,得x2﹣2ABx+x=9,
解得x=5.
∴原来标杆的高度为5米.
【点睛】
本题主要考查了勾股定理的应用,解题的关键在于能够熟练掌握勾股定理.
19.(1)见解析;(2).
【解析】
【分析】
(1)利用网格即可确定C点位置;
(2)由勾股定理在Rt△DBG中,可求BD的长.
【详解】
解:(1)如图,
∴
∴BC⊥AB,
在Rt△ACH中,A
解析:(1)见解析;(2).
【解析】
【分析】
(1)利用网格即可确定C点位置;
(2)由勾股定理在Rt△DBG中,可求BD的长.
【详解】
解:(1)如图,
∴
∴BC⊥AB,
在Rt△ACH中,AC=5;
(2)∵CD=,AD=,可确定D点位置如图,
∴在Rt△DBG中,BD=.
【点睛】
本题考查勾股定理的应用,利用三角形内角和确定C点位置,由勾股定理确定D点的位置是解题的关键.
20.(1)见解析;(2)25°
【分析】
(1)由题意可证四边形DFBE是平行四边形,且DE⊥AB,可得结论;
(2)根据平行四边形的性质求得∠ADC=130°,DE=CD,再利用等腰三角形的性质即可求
解析:(1)见解析;(2)25°
【分析】
(1)由题意可证四边形DFBE是平行四边形,且DE⊥AB,可得结论;
(2)根据平行四边形的性质求得∠ADC=130°,DE=CD,再利用等腰三角形的性质即可求解.
【详解】
(1)证明:在▱ABCD中,AD∥BC,AD=BC,
∴ED∥BF.
∵ED=AD−AE,BF=BC−CF,AE=CF,
∴ED=BF.
∴四边形BFDE是平行四边形.
∵DF⊥BC,
∴∠DFB=90°,
∴四边形BFDE是矩形;
(2)解:在▱ABCD中,AB=CD,∠ABC=∠ADC.
∵DE=AB,∠ABC=130°,
∴DE=CD,∠ADC=130°.
∴∠DEC=×(180°−130°)=25°.
【点睛】
本题考查了矩形的判定,平行四边形的性质,运用等腰三角形的判定和性质解决问题是本题的关键.
21.(1) , ;(2)
【解析】
【分析】
(1)化简时,根据范例确定a,b值为3和1,化简时,根据范例确定a,b值为4和5,再根据范例求解.(2)化简时,根据范例确定a,b值为15和4,再根据范例求
解析:(1) , ;(2)
【解析】
【分析】
(1)化简时,根据范例确定a,b值为3和1,化简时,根据范例确定a,b值为4和5,再根据范例求解.(2)化简时,根据范例确定a,b值为15和4,再根据范例求解.
【详解】
解:(1)在中,m=4,n=3,由于3+1=4,3×1=3
即,
∴=;
首先把化为,这里m=9,n=20,由于4+5=9,4×5=20
即,
∴=
(2)首先把化为,这里m=19,n=60,由于15+4=19,15×4=60
即,
∴=
【点睛】
本题考查了二次根式的化简,根据题中的范例把根号内的式子整理成完全平方的形式是解答此题的关键.
22.(1)30(15﹣x),180(15﹣x);(2)租A型客车10辆,B型客车5辆,可使租车总费用y最少,最少为3900元
【分析】
(1)根据“B型车的载客量=租的辆数×满载人数”以及“租B型车应付
解析:(1)30(15﹣x),180(15﹣x);(2)租A型客车10辆,B型客车5辆,可使租车总费用y最少,最少为3900元
【分析】
(1)根据“B型车的载客量=租的辆数×满载人数”以及“租B型车应付租金=每辆的租金×租的辆数”即可得出结论;
(2)设租车的总费用为y元,根据“总租金=租A型车的租金+租B型车的租金”即可得出y关于x的函数关系式,再根据A型客车的数量不小于B型客车数量的2倍,列出关于x的一元一次不等式,解不等式即可得出x的取值范围,根据一次函数的性质即可解决最值问题.
【详解】
解:(1)设租用A型客车x辆,则租用B型客车(15﹣x)辆,
B型车的载客量30(15﹣x),租金为180(15﹣x).
故答案为:30(15﹣x),180(15﹣x);
(2)根据题意得:x≥2(15﹣x),
解得:x≥10,
∵y=300x+180(15﹣x)=120x+2700,
又∵120>0,
∴y随x的增大而增大,
∵x是正整数,
∴当x取最小值10时,y有最小值3900,
答:租A型客车10辆,B型客车5辆,可使租车总费用y最少,最少为3900元.
【点睛】
本题考查了列代数式,一元一次不等式的应用,一次函数的应用,理解题意,根据一次函数的的性质求最值是解题的关键.
23.(1)等边三角形;(2)成立,理由见解析;(3)或.
【分析】
(1)根据题意先判断出四边形ABCE和四边形ACDE都是梯形.得出FG为梯形ABCE的中位线,GH为梯形ACDE的中位线.从而得出,.
解析:(1)等边三角形;(2)成立,理由见解析;(3)或.
【分析】
(1)根据题意先判断出四边形ABCE和四边形ACDE都是梯形.得出FG为梯形ABCE的中位线,GH为梯形ACDE的中位线.从而得出,.即证明为等边三角形.
(2)先判断出PF,PG是△ABC和△CDE的中位线,再判断出∠FPG=∠FCH,进而证明△FPG≌△FCH,得出结论FG=FH,∠PFG=∠CFH,最后证明出∠GFH=,即证明△FGH为等边三角形.
(3)①当点E在AE上时,先求出CM,进而求出AM,即可求出AD,再判断出,进而求出BE=AD=2,,即可判断出,再求出BN、EN,进而求出BD,最后即可求出FH,即可得出结果;②当点D在AE的延长线上时同①的方法即可得出结果.
【详解】
(1)∵和都为等边三角形,且边长不相等.
∴,.
∴四边形ABCE和四边形ACDE都是梯形.
又∵F、G、H分别是BC、AE、CD中点,
∴FG为梯形ABCE的中位线,GH为梯形ACDE的中位线.
∴,.
∴,.
∴为等边三角形.
故答案为:等边三角形.
(2)取AC的中点P,连接PF,PG,
∵△ABC和△CDE都是等边三角形,
∴AB=BC,CE=CD, ∠BAC= ∠ACB= ∠ECD= ∠B=60°.
又F,G,H分别是BC,AE,CD的中点,
∴FP=AB,FC=BC,CH=CD,PG=CE,PG∥CE,PF∥AB.
∴FP=FC,PG=CH,∠GPC+∠PCE=180°,∠FPC=∠BAC=60°,∠PFC=∠B=60°.
∴∠FPG=∠FPC+∠GPC=60°+∠GPC,∠GPC=180°-∠PCE.
∴∠FCH=360°-∠ACB-∠ECD-∠PCE=360°-60°-60°-(180°-∠GPC)=60°+∠GPC.
∴∠FPG=∠FCH.
∴△FPG≌△FCH(SAS).
∴FG=FH,∠PFG=∠CFH.
∴∠GFH=∠GFC+∠CFH=∠GFC+∠PFG=∠PFC=60°.
∴△FGH为等边三角形.
所以成立.
(3)①当点D在AE上时,如图,
∵是等边三角形,
∴,.
∵是等边三角形,
∴,,
过点C作于M,
∴,
在中,根据勾股定理得,,
在中,根据勾股定理得,,
∴,
∵,
∴,
∴,
连接BE,
在和中,
,
∴(SAS),
∴BE=AD=2, ,
∵,
∴,
∴,
过点B作于N,
∴,在中,,
∴,
∴,DN=DE-EN=3,
连接BD,
根据勾股定理得:,
∵点H是CD中点,点F是BC中点,
∴FH是的中位线,
∴,
由(2)可知,△FGH为等边三角形.
∴△FGH的周长.
②当点D在AE的延长线上时,如图,
同理可求,所以△FGH的周长.
即满足条件的△FGH的周长位或.
【点睛】
本题考查等边三角形的判定和性质,全等三角形的判定和性质,勾股定理,含角的直角三角形的性质,三角形的中位线定理.属于几何变换综合题,综合性强,较难.
24.(1)E,;(2);(3),.
【解析】
【分析】
(1)根据矩形的性质得到,,再根据折叠的性质得到,,易得,则,即可得到点坐标;在中,设,则,利用勾股定理可计算出,再在中,利用勾股定理计算出。
(
解析:(1)E,;(2);(3),.
【解析】
【分析】
(1)根据矩形的性质得到,,再根据折叠的性质得到,,易得,则,即可得到点坐标;在中,设,则,利用勾股定理可计算出,再在中,利用勾股定理计算出。
(2)过点作于,则,从而在中可用表示出的长,利用梯形的面积公式可用表示出,点与点重合时是取得最大值的点,
(3)以、、为顶点作平行四边形,作出点关于轴对称点,则易得到的坐标,的坐标,然后利用待定系数法求出直线的解析式,令,得,确定点坐标,也即可得到点坐标.
【详解】
解:(1)四边形为矩形,
,,
沿折叠,使点恰好落在边点上,
,,
在中,,,
,
,
点坐标为;
在中,设,则,
,解得,
在中,
;
(2)过点作于,则,
沿折叠得到,
,故可表示为,
在中,,即,
解得:,
,即,
点与点重合点与点重合、点与点重合分别是点的两个极限,
点与点重合时,由①的结论可得,此时,
点与点重合时,,
综上可得:,.
(3)以、、为顶点作平行四边形,作出点关于轴对称点,如图:
的坐标为,,
的坐标为,
设直线的解析式为,
把,代入得
,,
解得,,
直线的解析式为,
令,得,解得,
,.
【点睛】
本题考查了折叠的性质、矩形的性质及最短路径的知识,综合性较强,难度较大,注意掌握折叠前后两图形全等,即对应线段相等,对应角相等,在求自变量范围的时候,要注意寻找极限点,不要想当然的判断.
25.(1)①见解析;②见解析;(2)
【分析】
(1)①过点D作DM//GH交BC的延长线于点M,如图1,可证得四边形DGHM是平行四边形,进而可证△ADE≌△CDM(AAS),即可证得结论;
②在BC
解析:(1)①见解析;②见解析;(2)
【分析】
(1)①过点D作DM//GH交BC的延长线于点M,如图1,可证得四边形DGHM是平行四边形,进而可证△ADE≌△CDM(AAS),即可证得结论;
②在BC上截取BN=BE,如图2,则△BEH是等腰直角三角形,,由△ADE≌△CDH,利用全等三角形性质和正方形性质即可得出结论;
(2)如图3,过点D作DN//GH交BC于点N,则四边形GHND是平行四边形,作∠ADM=∠CDN,DM交BA延长线于M,利用AAS证明△ADM≌△CDN,设AE=x,则BE=3-x,运用勾股定理建立方程求解即可.
【详解】
解:(1)①过点D作DM//GH交BC的延长线于点M,如图1,
∵四边形ABCD是正方形,
∴AD∥BC,∠ADC=90°,
又∵DM∥GH,
∴四边形DGHM是平行四边形,
∴GH=DM,GD=MH,
∴∠GOD=∠MDE=90°,
∴∠MDC+∠EDC=90°,
∵∠ADE+∠EDC=90°,
∴∠MDC=∠ADE,
在△ADE和△CDM中,
∴△ADE≌△CDM(AAS),
∴DE=DM,
∴DE=GH;
②在BC上截取BN=BE,如图2,
则△BEN是等腰直角三角形,EN=BE,
由(1)知,△ADE≌△CDH,
∴AE=CH,
∵BA=BC,BE=BN,
∴CN=AE=CH,
∵PH=PE,
∴PC=EN,
∴PC=BE,
∴BE=PC;
(2)如图3,过点D作DN//GH交BC于点N,则四边形GHND是平行四边形,
∴DN=HG,GD=HN,
∵∠C=90°,CD=AB=3,HG=DN=,
∴,
∴BN=BC-CN=3-1=2,
作∠ADM=∠CDN,DM交BA延长线于M,
在△ADM和△CDN中,
∴△ADM≌△CDN(AAS),
∴AM=NC,∠ADM=∠CDN,DM=DN,
∵∠GOD=45°,
∴∠EDN=45°,
∴∠ADE+∠CDN=45°,
∴∠ADE+∠ADM=45°=∠MDE,
在△MDE和△NDE中,
∴EM=EN,
即AE+CN=EN,
设AE=x,则BE=3-x,
在Rt△BEN中,22+(3-x)2=(x+1)2,
解得:x=,
∴
【点睛】
本题是四边形综合题,考查了正方形性质,等腰直角三角形判定和性质,平行四边形的判定与性质,全等三角形判定和性质,勾股定理等,添加辅助线构造全等三角形是解题关键.
26.(1)见解析;(2)①见解析;②
【分析】
(1)利用SAS证明△ACD≌△BCE,从而利用全等三角形的性质即可得出结论;
(2)①过点D作DH⊥CF于H,过点B作BG⊥CF,交CF的延长线于G,首
解析:(1)见解析;(2)①见解析;②
【分析】
(1)利用SAS证明△ACD≌△BCE,从而利用全等三角形的性质即可得出结论;
(2)①过点D作DH⊥CF于H,过点B作BG⊥CF,交CF的延长线于G,首先证明△ACT≌△BCG及△DCH≌△ECT,得到CT=BG,CT=DH,通过等量代换得出DH=BG,再证明△DHF≌△BGF,则可证明结论;
②首先利用等腰三角形的性质和ASA证明△AOM≌△COF,则有OM=OF,然后利用等腰直角三角形的性质得出FK=BF,然后利用三角形的面积得出OF×BF=10,最后利用平方的非负性和完全平方公式求解即可.
【详解】
证明:(1)∵△ABC是等腰直角三角形,AC=BC,
∴∠ACB=90°,
∵CD⊥CE,
∴∠ACB=∠DCE=90°,
∴∠ACD+∠BCD=∠BCE+∠BCD,即∠ACD=∠BCE,
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS),
∴AD=BE;
(2)①如图2,过点D作DH⊥CF于H,过点B作BG⊥CF,交CF的延长线于G,
∵CF⊥AE,
∴∠ATC=∠ATF=90°,
∴∠ACT+∠CAT=90°,
又∵∠ACT+∠BCG=90°,
∴∠CAT=∠BCG,
在△ACT和△CBG中,
,
∴△ACT≌△CBG(AAS),
∴CT=BG,
同理可证△DCH≌△ECT,
∴CT=DH,
∴DH=BG,
在△DHF和△BGF中,
,
∴△DHF≌△BGF(AAS),
∴DF=BF;
②如图3,过点F作FK⊥BC于K,
∵等腰Rt△ABC,CA=CB,点O是AB的中点,
∴AO=CO=BO,CO⊥AB,∠ABC=45°,
∴∠OCF+∠OFC=90°,
∵AT⊥CF,
∴∠ATF=90°,
∴∠OFC+∠FAT=90°,
∴∠FAT=∠OCF,
在△AOM和△COF中,
,
∴△AOM≌△COF(ASA),
∴OM=OF,
又∵CO⊥AO,
∴∠OFM=∠OMF=45°,,
∴∠OFM=∠ABC,MF=OF,
∴MFBC,
∴∠MFK=∠BKF=90°,
∵∠ABC=45°,FK⊥BC,
∴∠ABC=∠BFK=45°,
∴FK=BK,
∵,
∴FK=BF,
∵S△FMN=5,
∴×MF×FK=5,
∴OF×BF=10,
∴OF×BF=10,
∵(BF﹣OF)2≥0,
∴BF2+OF2﹣2BF×OF≥0,
∴BF2+OF2≥2×10=20,
∴BF2+OF2的最小值为20.
【点睛】
本题主要考查全等三角形的判定及性质,等腰直角三角形的性质与判定,平行线的性质与判定,三角形面积,完全平方公式等等,掌握等腰直角三角形的性质与判定和全等三角形的判定方法及性质是解题的关键.
展开阅读全文