收藏 分销(赏)

人教版数学八年级下册数学期末试卷检测题(Word版含答案).doc

上传人:精**** 文档编号:1894144 上传时间:2024-05-11 格式:DOC 页数:30 大小:808.54KB
下载 相关 举报
人教版数学八年级下册数学期末试卷检测题(Word版含答案).doc_第1页
第1页 / 共30页
人教版数学八年级下册数学期末试卷检测题(Word版含答案).doc_第2页
第2页 / 共30页
人教版数学八年级下册数学期末试卷检测题(Word版含答案).doc_第3页
第3页 / 共30页
人教版数学八年级下册数学期末试卷检测题(Word版含答案).doc_第4页
第4页 / 共30页
人教版数学八年级下册数学期末试卷检测题(Word版含答案).doc_第5页
第5页 / 共30页
点击查看更多>>
资源描述

1、人教版数学八年级下册数学期末试卷检测题(Word版含答案)一、选择题1已知是整数,则正整数n的最小值是()A2B4C6D82一个直角三角形的三边长分别为a,b,c,那么以3a,3b,3c为三边长的三角形是( )A直角三角形B锐角三角形C钝角三角形D等边三角形3小红同学周末在家做家务,不慎把家里的一块平行四边形玻璃打碎成如图所示的四块,为了能从玻璃店配到一块与原来相同的玻璃,他应该带其中( )两块去玻璃店ABCD4远离白色垃圾从我做起,小明统计了上周一至周日7天他家使用塑料袋个数分别为:11,10,11,13,11,13,15关于这组数据,小明得出如下结果,其中错误的是()A众数是11B平均数是

2、12C方差是D中位数是135三角形的三边长分别为6,8,10,则它的最长边上的高为( )A4.8B8C6D2.46如图,的面积是12,是边上一点,连结,现将沿翻折,点恰好落在线段上的点处,且,则四边形的面积是( )A4B4.5C5D5.57如图,在中,点为边上任意一点过点分别作于点,于点,则线段的最小值是( )A2B2.4C3D48如图,把RtABC放在平面直角坐标系内,其中CAB90,BC13,点A、B的坐标分别为(1,0),(6,0),将ABC沿x轴向右平移,当点C落在直线y2x4上时,线段BC扫过的面积为()A84B80C91D78二、填空题9若使在实数范围内有意义,则的取值范围为_10

3、在菱形ABCD中,两条对角线相交于点O,且AB10cm,AC12cm则菱形ABCD的面积是_cm211图中阴影部分是一个正方形,则此正方形的面积为_ 12如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是40厘米,矩形的周长是22厘米,则对角线AC的长为 _厘米13饮料每箱24瓶,售价48元,买饮料的总价y (元)与所买瓶数x之间的函数_14如图,在中,AD,CD分别平分和,若从以下三个条件:;中选择一个作为已知条件,则能使四边形ADCE为菱形的是_(填序号)15正方形,按如图所示的方式放置,点,和点,分别在直线和轴上,已知点,则的横坐标是_16如图,对折矩形纸片,使

4、与重合得到折痕,将纸片展平,再一次折叠,使点A落到上的点G处,并使折痕经过点B,交于点H,交于点M已知,则线段的长度为_三、解答题17(1)(2)18一艘轮船以30千米/时的速度离开港口,向东南方向航行,另一艘轮船同时离开港口,以40千米/时的速度航行,它们离开港口一个半小时后相距75千米,求第二艘船的航行方向19如图,每个小正方形的边长都为1,AB的位置如图所示(1)在图中确定点C,请你连接CA,CB,使CBBA,AC5;(2)在完成(1)后,在图中确定点D,请你连接DA,DC,DB,使CD,AD,直接写出BD的长20如图,矩形ABCD的对角线AC与BD交于点,作CFBD,DFAC求证:四边

5、形DECF为菱形21观察下列各式:化简以上各式,并计算出结果;以上式子与其结果存在一定的规律请按规律写出第个式子及结果猜想第个式子及结果(用含(的整数)的式子写出),并对猜想进行证明22亮亮奶茶店生产、两种奶茶,由于地处旅游景点区域,每天都供不应求,经过计算,亮亮发现种奶茶每杯生产时间为4分钟,种奶茶每杯生产时间为1分钟,由于原料和运营时间限制,每天生产的总时间为300分钟(1)设每天生产种奶茶杯,生产种奶茶杯,求与之间的函数关系式;(2)由于种奶茶比较受顾客青睐,亮亮决定每天生产种奶茶不少于73杯,那么不同的生产方案有多少种?(3)在(2)的情况下,若种奶茶每杯利润为3元,种奶茶每杯利润为1

6、元,求亮亮每天获得的最大利润23(1)如图1,在平行四边形ABCD中,对角线AC、BD相交于O点,过点O的直线l与边AB、CD分别交于点E、F,绕点O旋转直线l,猜想直线l旋转到什么位置时,四边形AECF是菱形证明你的猜想 (2)若将(1)中四边形ABCD改成矩形ABCD,使AB=4cm,BC=3cm,如图2,绕点O旋转直线l与边AB、CD分别交于点E、F,将矩形ABCD沿EF折叠,使点A与点C重合,点D的对应点为D,连接DD,求DFD的面积如图3,绕点O继续旋转直线l,直线l与边BC或BC的延长线交于点E,连接AE,将矩形ABCD沿AE折叠,点B的对应点为B,当CEB为直角三角形时,求BE的

7、长度请直接写出结果,不必写解答过程24如图1,直线y=kx+b经过第一象限内的定点P(3,4)(1)若b=7,则k=_;(2)如图2,直线y=kx+b与y轴交于点C,已知点A(6,t),过点A作AB/y轴交第一象限内的直线y=kx+b于点B,连接OB,若BP平分OBA证明是等腰三角形;求k的值;(3)如图3,点M是x轴正半轴上的一个动点,连接PM,把线段PM绕点M顺时针旋转90至线段NM(PMN=90且PM=MN),连接OP,ON,PN,当周长最小时,求点N的坐标;25在直角坐标系中,四边形是矩形,点在轴上,点在轴的正半轴上,点,分别在第一,二象限,且,(1)如图1,延长交轴负半轴于点,若求证

8、:四边形为平行四边形求点的坐标(2)如图2,为上一点,为的中点,若点恰好落在轴上,且平分,求的长(3)如图3,轴负半轴上的点与点关于直线对称,且,若的面积为矩形面积的,则的长可为_(写出所有可能的答案)26如图,ABC和ADE都是等腰三角形,其中ABAC,ADAE,BACDAE(1)如图,连接BE、CD,求证:BECD;(2)如图,连接BD、CD,若BACDAE60,CDAE,AD3,CD5,求BD的长;(3)如图,若BACDAE90,且C点恰好落在DE上,试探究CD、CE和CA之间的数量关系,并加以说明【参考答案】一、选择题1C解析:C【分析】因为是整数,且,则6n是完全平方数,满足条件的最

9、小正整数n为6【详解】解:,且是整数,是整数,即6n是完全平方数;n的最小正整数值为6故选:C【点睛】本题主要考查了二次根式的定义,关键是根据乘除法则和二次根式有意义的条件,二次根式有意义的条件时被开方数是非负数进行解答2A解析:A【分析】根据勾股定理逆定理判断即可;【详解】直角三角形的三边长分别为a,b,c,假设c为斜边,以3a,3b,3c为三边长的三角形是直角三角形;故选A【点睛】本题主要考查了勾股定理逆定理,准确分析判断是解题的关键3B解析:B【解析】【分析】为了能从玻璃店配到一块与原来相同的玻璃,必须能够确定平行四边形的大小和形状,根据平行四边形的判定即可判断【详解】A、只能确定平行四

10、边形的形状,还能确定一组对边的大小,但另一组对边的大小无法确定,故不合题意;B、两块两个角的两边互相平行,且中间部分相连,角的两边延长线的交点就是平行四边形的顶点,所以能确定平行四边形的四个顶点,因而能确定其大小和形状,故符合题意;C、只能确定平行四边形的形状,还能确定一组对边的大小,但另一组对边的大小无法确定,故不合题意;D、只能确定平行四边形的形状,无法确定两组对边的大小,故不合题意;故选:B【点睛】本题考查了平行四边形的判定,关键是理解确定一个平行四边形,既要考虑形状,又要考虑大小,两者同时确定了才可确定一个平行四边形4D解析:D【解析】【分析】根据中位数、平均数、众数和方差的定义计算即

11、可得出答案【详解】解:A数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,故选项A不符合题意;B =(11+10+11+13+11+13+15)7=12,即平均数是12,故选项B不符合题意; CS2=(10-12)2+(11-12)23+(13-12)22+(15-12)2=,故选项C不符合题意;D将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,故选项D符合题意;故选:D【点睛】本题主要考查了中位数、平均数、众数和方差,熟练掌握中位数、众数的定义和方差、平均数的计算公式是解题的关键5A解析:A【分析】根据已知先判定其形状,再根据

12、三角形的面积公式求得其高【详解】解:三角形的三边长分别为6,8,10,符合勾股定理的逆定理62+82=102,此三角形为直角三角形,则10为直角三角形的斜边,设三角形最长边上的高是h,根据三角形的面积公式得:68=10h,解得h=4.8故选A【点睛】考查了勾股定理的逆定理,解答此题的关键是先判断出三角形的形状,再根据三角形的面积公式解答勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形6A解析:A【解析】【分析】设DE与AC交于H,由折叠的性质可知,AH=HF,AHD=90,AE=EF,再由直角三角形斜边上的中线等于斜边的一半可以得到AE=BE,再

13、证明DAHBCF,得到AH=CF=HF,则,从而得出,,【详解】解:设DE与AC交于H,由折叠的性质可知,AH=HF,AHD=90,AE=EFBFC=90,BFC=DHA=AFB=90,EF是直角三角形AFB的中线,AE=BE,四边形ABCD是平行四边形,AD=BC,ADBC,DAH=BCF,DAHBCF(AAS),AH=CF=HF,,,故选A【点睛】本题主要考查了平行四边形的性质,全等三角形的性质与判定,折叠的性质,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解7B解析:B【解析】【分析】求出四边形PECF是矩形,根据矩形的性质得出EF=CP,根据垂线段最短得出CPAB时

14、,CP最短,根据三角形的面积公式求出此时CP值即可【详解】解:连接CP,PEAC,PFBC,ACB=90,PEC=ACB=PFC=90,四边形PECF是矩形,EF=CP,当CPAB时,CP最小,即EF最小,在RtABC中,C=90,AC=3,BC=4,由勾股定理得:AB=5,由三角形面积公式得:ACBC=ABCP,CP=,即EF的最小值是=2.4,故选:B【点睛】本题考查了勾股定理,三角形的面积,矩形的性质和判定,垂线段最短等知识点,能求出EF最短时P点的位置是解此题的关键8A解析:A【分析】首先根据题意作出图形,则可得线段BC扫过的面积应为平行四边形BCCB的面积,其高是AC的长,底是点C平

15、移的路程则可由勾股定理求得AC的长,由点与一次函数的关系,求得A的坐标,即可求得CC的值,继而求得答案【详解】解:如下图:点A、B的坐标分别为(1,0)、(6,0),AB5CAB90,BC13,AC12AC12点C在直线y2x4上,2x412,解得:x8即OA8CCAAOAOA817,71284,即线段BC扫过的面积为84故选:A【点睛】此题考查了一次函数的性质、平移的性质、勾股定理以及平行四边形的性质能根据性质得出的底和高是解决此题的关键.二、填空题9【解析】【分析】根据二次根式有意义时被开方数为非负数,分式的分母不为零列式计算可求解【详解】解:由题意得6-3x0,解得x2,故答案为:x2【

16、点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键10A解析:96【解析】【分析】根据菱形的性质可得ACBD,然后利用勾股定理求出OB8cm,得出BD16cm,最后根据菱形的面积公式求解【详解】解:四边形ABCD为菱形,ACBD,OAOCAC6cm,OBOD,OB8(cm),BD2OB16cm,S菱形ABCDACBD121696(cm2)故答案为:96【点睛】本题主要考查菱形的性质,熟练掌握菱形的性质是解题的关键1136cm2【解析】【分析】利用勾股定理求正方形边长,从而求正方形的面积【详解】解:由题意可知:正方形的边长为:正方形的面积为:6=36故答案为:36 c

17、m2【点睛】本题考查勾股定理解直角三角形,题目比较简单,正确计算是解题关键12A解析:5【分析】根据矩形性质得出OA=OB=OC=OD,AB=CD,AD=BC,求出8OA+2AB+2BC=40厘米和2AB+2BC=22厘米,求出OA,即可求出答案【详解】解:四边形ABCD是矩形,AB=CD,AD=BC,AC=BD,AO=OC,OD=OB,AO=OC=OD=OB,矩形ABCD被两条对角线分成四个小三角形的周长的和是40厘米,OA+OD+AD+OD+OC+CD+OC+OB+BC+OA+OB+AB=40厘米,即8OA+2AB+2BC=40厘米,矩形ABCD的周长是22厘米,2AB+2BC=22厘米,

18、8OA=18厘米,OA=2.25厘米,即AC=BD=2OA=4.5厘米故答案为:4.5【点睛】本题考查了矩形的性质的应用,注意:矩形的对边相等,矩形的对角线互相平分且相等13y=2x【详解】试题解析:每瓶的售价是=2(元/瓶),则买的总价y(元)与所买瓶数x之间的函数关系式是:y=2x考点:根据实际问题列一次函数关系式14B解析:【分析】当BA=BC时,四边形ADCE是菱形只要证明四边形ADCE是平行四边形,DA=DC即可解决问题【详解】解:当时,四边形ADCE是菱形理由:,四边形ADCE是平行四边形,AD,CD分别平分和,四边形ADCE是菱形故答案为:.【点睛】本题考查菱形的判断、平行四边形

19、的判断和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型15【分析】根据,即可归纳出的横坐标【详解】解:点,和点,分别在直线和轴上,已知点,(0,1),(1,2),(3,4),(7,8),故答案解析:【分析】根据,即可归纳出的横坐标【详解】解:点,和点,分别在直线和轴上,已知点,(0,1),(1,2),(3,4),(7,8),故答案是:【点睛】本题主要考查一次函数图像和正方形的性质,根据点,找出横坐标的变化规律,是解题的关键16【分析】根据折叠的性质,结合题意得出,则,进而得到,于是证明是等边三角形,得到,最后在中,由勾股定理求解即可【

20、详解】解:由折叠可得,由题意得,点E是AB的中点,且,解析:【分析】根据折叠的性质,结合题意得出,则,进而得到,于是证明是等边三角形,得到,最后在中,由勾股定理求解即可【详解】解:由折叠可得,由题意得,点E是AB的中点,且,且,是等边三角形,在中,设,则,根据勾股定理得:,即,解得:,(舍去)故答案为:【点睛】本题考查矩形的性质,折叠的性质,等边三角形的判定及性质,以及勾股定理,清楚图形的边角关系是解题关键三、解答题17(1);(2)【分析】(1)先计算二次根式的除法和乘法,再进行二次根式的加减运算;(2)先化简最简二次根式,然后进行二次根式的乘法,最后合并同类二次根式即可【详解】(1)原式;

21、解析:(1);(2)【分析】(1)先计算二次根式的除法和乘法,再进行二次根式的加减运算;(2)先化简最简二次根式,然后进行二次根式的乘法,最后合并同类二次根式即可【详解】(1)原式; (2)原式【点睛】本题考查了二次根式的混合运算,掌握二次根式的运算法则并能正确进行运算是关键18第二艘船的航行方向为东北或西南方向【分析】根据路程=速度时间分别求得OA、OB的长,再进一步根据勾股定理的逆定理可以证明三角形OAB是直角三角形,从而求解【详解】解:如图,根据题意,解析:第二艘船的航行方向为东北或西南方向【分析】根据路程=速度时间分别求得OA、OB的长,再进一步根据勾股定理的逆定理可以证明三角形OAB

22、是直角三角形,从而求解【详解】解:如图,根据题意,得(千米),(千米),千米,第二艘船的航行方向为东北或西南方向【点睛】此题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形根据条件得出第二艘船的航行方向与第一艘船的航行方向成90是解题的关键19(1)见解析;(2)【解析】【分析】(1)利用网格即可确定C点位置;(2)由勾股定理在RtDBG中,可求BD的长【详解】解:(1)如图,BCAB,在RtACH中,A解析:(1)见解析;(2)【解析】【分析】(1)利用网格即可确定C点位置;(2)由勾股定理在RtDBG中,可求BD的长【详解】解:(1)如

23、图,BCAB,在RtACH中,AC5;(2)CD,AD,可确定D点位置如图,在RtDBG中,BD【点睛】本题考查勾股定理的应用,利用三角形内角和确定C点位置,由勾股定理确定D点的位置是解题的关键20见解析【分析】根据DFAC,CFBD,即可证出四边形EDFC是平行四边形,又知四边形ABCD是矩形,故可得ED=BD=AC=EC,即可证出四边形EDFC是菱形【详解】证明:DFAC解析:见解析【分析】根据DFAC,CFBD,即可证出四边形EDFC是平行四边形,又知四边形ABCD是矩形,故可得ED=BD=AC=EC,即可证出四边形EDFC是菱形【详解】证明:DFAC,CFBD四边形EDFC是平行四边形

24、,四边形ABCD是矩形,ED=BD=AC=EC,四边形EDFC是菱形【点睛】本题主要考查矩形性质和菱形的判定的知识点,解答本题的关键是熟练掌握菱形的判定定理,此题比较简单21;第个式子为及结果为,证明见解析【解析】【分析】(1)分别把每个式子的第二项进行分母有理化,观察结果;(2)根据(1)的结果写出第5个式子及结果;(3)根据(1)的规律可得,然后分母有理解析:;第个式子为及结果为,证明见解析【解析】【分析】(1)分别把每个式子的第二项进行分母有理化,观察结果;(2)根据(1)的结果写出第5个式子及结果;(3)根据(1)的规律可得,然后分母有理化,求出结果即可【详解】解: 第个式子为及结果为

25、证明:左边右边成立【点睛】本题主要考查分母有理化的知识点,解答本题的关键是找出上述各式的变化规律,此题难度一般22(1);(2)3种;(3)227元【分析】(1)依据每天生产的时间为300分钟列出函数关系式即可;(2)由种奶茶不少于73杯,种奶茶的杯数为非负数列不等式组求解即可;(3)列出利润与的函数关解析:(1);(2)3种;(3)227元【分析】(1)依据每天生产的时间为300分钟列出函数关系式即可;(2)由种奶茶不少于73杯,种奶茶的杯数为非负数列不等式组求解即可;(3)列出利润与的函数关系式,然后依据一次函数的性质求解即可【详解】(1)每天生产的时间为300分钟,由题意得:,(2)由题

26、意得:解得:为整数,74,75不同的生产方案有3种(3)设每天的利润为元,则即,随的增大而减小当时,取最大值,此时(元)答:每天获得的最大利润为227元【点评】本题主要考查的是一次函数的应用,列出关于的不等式组是解题的关键23(1)四边形AECF是菱形,见解析;(2) cm2;BE的长为cm或cm或4cm或cm【分析】(1)根据题意作图,先根据平行四边形得出FCO=EAO,再证明COFAOE,结合题意解析:(1)四边形AECF是菱形,见解析;(2) cm2;BE的长为cm或cm或4cm或cm【分析】(1)根据题意作图,先根据平行四边形得出FCO=EAO,再证明COFAOE,结合题意即可得出结论

27、;(2)根据四边形ABCD是矩形,设DF=xcm,则CF=(4x)cm,结合折叠和勾股定理得出CF,过D作DHCF于H,由面积相等可得DH=,进而得出所求面积;根据不同图示分情况设BE=xcm,CE=(3x)cm,根据折叠并结合勾股定理得出x即为所求【详解】解:(1)猜想:当lAC时,四边形AECF是菱形,如图1:连接AF、CE,四边形ABCD是平行四边形,OA=OC,ABCD,FCO=EAO,又FOC=EOA,COFAOE,OE=OF,ACEF,四边形AECF是菱形;(2)四边形ABCD是矩形,ADC=90,CD=AB=4,AD=BC=3,设DF=xcm,则CF=(4x)cm,由折叠性质可知

28、:DF=DF=x,CD=AD=3,CDF=ADC=90,由勾股定理得(4x)2=32+x2, 解得x= , DF=DF= , CF=4= , 如图2,过D作DHCF于H,由面积相等可得,CFDH=DFCD,DH=, SDFD=(cm2);如图,设BE=xcm,CE=(3x)cm,AC=5cm,BC=54=1cm,根据勾股定理可得BC2+BE2=CE2,即:12+x2=(3-x)2 解得:x=cm,如图,设BE=xcm,则CE=(3x)cm,AB=4cm,BE=xcm,在RtADB中,由勾股定理可得BD=cm,BC=(4)cm,在RtCBE中,BC2+CE2=BE2, 即168+7+96x+x2

29、=x2, 解得x=cm,如图,当四边形ABEB是正方形时,点B和点B关于直线AE对称,BEC是直角三角形,此时CE=1cm,BE=4cm;如图,BE=xcm,AB=4cm,AD=3cm,CE=(x3)cm,在RtADB中,BD=cm,BC=+4,在RtBCE中,7+8+16+x26x+9=x2, 解得x=cm,综上,BE的长为cm或cm或4cm或cm【点睛】此题属于四边形综合性试题,涉及到平行四边形,菱形,矩形,正方形的性质和勾股定理的应用,有一定难度,注意不同情况分别做图求解24(1)-1;(2)证明见详解;(3)(,)【解析】【分析】(1)把P(3,4),b=7代入y=kx+b中,可得k=

30、-1(2)根据平行的性质:内错角相等,证明OCB=OBC,由等角解析:(1)-1;(2)证明见详解;(3)(,)【解析】【分析】(1)把P(3,4),b=7代入y=kx+b中,可得k=-1(2)根据平行的性质:内错角相等,证明OCB=OBC,由等角对等边得到是等腰三角形根据坐标证明P是BC的中点,由等腰三角形三线合一性质得OPBC,求出OP函数关系式中k的值,根据两个一次函数图像互相垂直时k的关系,求解出直线BC的表达式中的k=(3)根据动点M的运动情况分析出N的轨迹函数,然后证明OHG是等腰直角三角形,根据中点坐标公式求得直线OP的表达式,联立方程求出N点坐标【详解】(1)把P(3,4),b

31、=7代入y=kx+b中,可得4=3k+7解得k=-1故答案为-1(2)ABy轴ABCOCBBP平分OBAOBC=ABCOCB=OBC是等腰三角形如图4所示,连接OPAB/y轴,A(6,t)B点横坐标是6P横坐标是3P是BC的中点OPBC设直线OP的表达式为y=kx将P(3,4)代入得4=3k解得k= ,则设直线BC的表达式中的k=.故答案为.(3)如图5-1,当点M与O重合时,作PEy轴于点E,作NFy轴于点FPMNMPMN=90PME+NMF=90FMN+FNM=90PME=MNF在PEMMFN中PEOOFN(AAS)MF=PE=3,FN=ME=4则N点的坐标为(4,-3)如图5-2所示,,

32、当PMx轴时,N点在x轴上,则MN=PM=3,ON=OM+MN=7,N的坐标为(7,0)综上所述得点N在直线y=x-7的直线上运动设直线y=x-7与坐标轴分别交于点G、H,作O关于直线HG的对称点O,连接OP交直线HG于点N,此时ON+PN有最小值,最小值为线段OP的长度.如图5-3所示.当直线y=x-7可得H(0,-7),G(7,0),OG=OH,OHG是等腰直角三角形,当OQHG时,Q是HG的中点,由中点坐标公式可得Q(,-),O与O对称Q是OO的中点由中点坐标公式可得O(7,-7),可得直线OP的表达式为联立方程,解得N点坐标为(,)当OPN周长最小时,点N的坐标为(,)故答案为(,)【

33、点睛】本题考查的是一次函数综合运用,涉及到三角形全等、角平分线的性质,平行的性质等,熟练掌握数形结合的解题方法是解决此题目的关键,综合性强,难度较大25(1)见解析;(2);(3)或【分析】(1)利用三线合一定理证明ED=CD,即可得到ED=AB,由矩形的性质可以得到AE=AC=BD,即可证明;设A(a,0),C(0,b),利用勾股定解析:(1)见解析;(2);(3)或【分析】(1)利用三线合一定理证明ED=CD,即可得到ED=AB,由矩形的性质可以得到AE=AC=BD,即可证明;设A(a,0),C(0,b),利用勾股定理求出,则CE=CD+DE=6,E(a-5,0),则,由此即可求解;(2)

34、延长BA到M于y轴交于M,先证明DGCAGM,得到DCG=AMG,AM=CD=AB=3,再由角平分线的定义即可推出CF=MF,设AF=m,则CF=MF=3+m,BF=AB-AF=3-m,由,得到,解方程即可;(3)分Q在矩形ABCD内部和外部两种情况求解即可【详解】解:(1)四边形ABCD是矩形,ADC=90,AC=BD,DC=ABAC=AE,CD=ED,AE=BDED=AB,四边形ABDE是平行四边形;设A(a,0),C(0,b),四边形ABCD是矩形,ABC=90,CD=AB=DE=3,CE=CD+DE=6,E(a-5,0),解得,;(2)如图,延长BA到M于y轴交于M,G为AD中点,AG

35、=DG,四边形ABCD是矩形,D=DAB=GAM=B=90,又DGC=AGM,DGCAGM(ASA),DCG=AMG,AM=CD=AB=3CG平分DCF,DCG=FCM=AMG,CF=MF,设AF=m,则CF=MF=3+m,BF=AB-AF=3-m,解得,;(3)当Q在矩形内部时,如图所示,过点Q作QEBC于E,延长EQ交AD于F,连接AQ,;BCAD,EFAD,BAAD,EFAB,四边形ABEF是矩形,EF=AB=3,BE=AF,点P与点Q关于直线AD对称,且AP=AD,AP=AD=AQ=4,;当Q在矩形ABCD的外部时,如图所示过点Q作QEBC于E,延长QE交AD于F,连接AQ同理求得,综

36、上所述,或,故答案为:或【点睛】本题主要考查了矩形的性质,勾股定理,两点距离公式,等腰三角形的性质与判定,平行四边形的判定等等,解题的关键在于能够熟练掌握相关知识进行求解26(1)见解析;(2);(3)2AC2CD2+CE2,理由见解析【分析】(1)先判断出BAECAD,进而得出ACDABE,即可得出结论;(2)先求出CDAADE30,进而解析:(1)见解析;(2);(3)2AC2CD2+CE2,理由见解析【分析】(1)先判断出BAECAD,进而得出ACDABE,即可得出结论;(2)先求出CDAADE30,进而求出BED90,最后用勾股定理即可得出结论;(3)连接BE,由等腰直角三角形的性质和

37、全等三角形的性质可得BECD,BEACDA45,由勾股定理可得2AC2CD2+CE2【详解】证明:(1)BACDAE,BAC+CAEDAE+CAE,即BAECAD;又ABAC,ADAE,ACDABE(SAS),CDBE;(2)如图,连接BE,ADAE,DAE60,ADE是等边三角形,DEAD3,ADEAED60,CDAE,CDAADE6030,由(1)得ACDABE,BECD5,BEACDA30,BEDBEA+AED30+6090,即BEDE,(3)2AC2CD2+CE2,理由如下:连接BE,ADAE,DAE90,DAED45,由(1)得ACDABE,BECD,BEACDA45,BECBEA+AED45+4590,即BEDE,在RtBEC中,BC2BE2+CE2,在RtABC中,AB2+AC2BC2,2AC2CD2+CE2【点睛】此题考查了等腰直角三角形、全等三角形的性质以及勾股定理,熟练掌握相关基本性质是解题的关键

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服