收藏 分销(赏)

八年级下册数学期末试卷检测题(Word版含答案).doc

上传人:人****来 文档编号:4896779 上传时间:2024-10-18 格式:DOC 页数:32 大小:1.26MB
下载 相关 举报
八年级下册数学期末试卷检测题(Word版含答案).doc_第1页
第1页 / 共32页
八年级下册数学期末试卷检测题(Word版含答案).doc_第2页
第2页 / 共32页
八年级下册数学期末试卷检测题(Word版含答案).doc_第3页
第3页 / 共32页
八年级下册数学期末试卷检测题(Word版含答案).doc_第4页
第4页 / 共32页
八年级下册数学期末试卷检测题(Word版含答案).doc_第5页
第5页 / 共32页
点击查看更多>>
资源描述

1、八年级下册数学期末试卷检测题(Word版含答案)一、选择题1下列式子一定是二次根式的是()ABCD2若以下列各组数值作为三角形的三边长,则不能围成直角三角形的是( )A4、6、8B3、4、5C5、12、13D1、3、3如图,在ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是( )ABFBBBCFCACCFDADCF4红河州博物馆拟招聘一名优秀讲解员,其中小华笔试、试讲、面试三轮测试得分分别为90分、94分、92分综合成绩中笔试占30%、试讲占50%、面试占20%,那么小华的最后得分为( )A分B分C分D分5如图所示,B=C=90

2、,E是BC的中点,AE平分DAB,则下列说法正确的个数是( )(1)DE平分CDA;(2)EBAEDA;(3)EBADCE;(4)AB+CD=AD;(5)AE2+DE2=AD2A4个B3个C2个D1个6如图是两个全等的三角形纸片,其三边长之比为,按图中方法分别将其对折,使折痕(图中虚线)过其中的一个顶点,且使该顶点所在两边重合,记折叠后不重叠部分面积分别为,已知,则纸片的面积是( )A102B104C106D1087如图,点P表示的数是1,点A表示的数是2,过点A作直线l垂直于PA,在直线l上取点B,使AB1,以点P为圆心,PB为半径画弧交数轴于点C,则点C所表示的数为( )ABCD8甲乙两人

3、在同一条笔直的公路上步行从A地去往B地,已知甲、乙两人保持各自的速度匀速步行,且甲先出发,甲乙两人的距离(千米)与甲步行的时间(小时)的函数关系图像如图所示,下列说法:乙的速度为千米/时;乙到终点时甲、乙相距千米;当乙追上甲时,两人距地千米;两地距离为千米其中错误的个数为( )A1个B2个C3个D4个二、填空题9使式子有意义的x的取值范围是_10菱形的对角线与相交于点O,若,则菱形的面积是_11如图,小正方形边长为,连接小正方形的三个顶点,可得. 则边上的高长度为_.12如图,在矩形ABCD中,对角线AC,BD相交于点O若AB5,AD12,则OC_13已知一次函数的图象经过,两点,则该一次函数

4、解析式是_14如图,在正方形ABCD中,点E、F分别在对角线BD上,请你添加一个条件_,使四边形AECF是菱形15如图,在平面直角坐标系中,为坐标原点,点的坐标为,点的坐标为,点是直线:上的一个动点,若,则点的坐标是_16如图,矩形纸片中,点、在矩形的边、上运动,将沿折叠,使点在边上,当折痕移动时,点在边上也随之移动则的取值范围为_三、解答题17(1)计算:(2)计算:18如图,在甲村到乙村的公路一旁有一块山地正在开发现A处需要爆破,已知点A与公路上的停靠站B,C的距离分别为400 m和300 m,且ACAB为了安全起见,如果爆破点A周围半径260 m的区域内不能有车辆和行人,问在进行爆破时,

5、公路BC段是否需要暂时封闭?为什么?19图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上(1)在图1中画出一个以AB为一边正方形ABCD,使点C、D在小正方形的顶点上;(2)在图2中画出一个以AB为一边,面积为6的ABEF,使点E、F均在小正方形的顶点上,并直接写出ABEF周长20如图,在矩形中,将矩形折叠,折痕为,使点C与点A重合,点D与点G重合,连接(1)判断四边形的形状,并说明理由;(2)求折痕的长21阅读下列材料,然后回答问题:在进行类似于二次根式的运算时,通常有如下两种方法将其进一步化简:方法一:方法二:(1)请用两

6、种不同的方法化简:;(2)化简:22杆称是我国传统的计重工具,如图1,可以用秤砣到秤纽的水平距离x(厘米),来得出秤钩上所挂物体的重量y(斤)如表中为若干次称重时所记录的一些数据 x(厘米)124711y(斤)0.751.001.502.253.25(1)请在图2平面直角坐标系中描出表中五组数据对应的点;(2)秤钩上所挂物体的重量y是否为秤纽的水平距离的函数?如果是,请求出符合表中数据的函数解析式;(3)当秤钩所挂物重是4.5斤时,秤杆上秤砣到秤纽的水平距离为多少厘米?23在中,将沿方向平移得到,的对应点分别是、,连接交于点(1)如图1,将直线绕点顺时针旋转,与、分别相交于点、,过点作交于点求

7、证:若,求的长;(2)如图2,将直线绕点逆时针旋转,与线段、分别交于点、,在旋转过程中,四边形的面积是否发生变化?若不变,求出四边形的面积,若变化,请说明理由;(3)在(2)的旋转过程中,能否为等腰三角形,若能,请直接写出的长,若不能,请说明理由24如图,在平面直角坐标系中,点的坐标为,点在轴正半轴上(),把线段绕点顺时针旋转得到线段,过点分别向轴,轴作垂线,垂足为,(1)求四边形的面积;(2)若,求直线的表达式;(3)在(2)的条件下,点为延长线上一点,连接,作的平分线,交轴于点,若为等腰三角形,求点的坐标25已知正方形与正方形(点C、E、F、G按顺时针排列),是的中点,连接,.(1)如图1

8、,点在上,点在的延长线上, 求证:=ME,.ME简析: 由是的中点,ADEF,不妨延长EM交AD于点N,从而构造出一对全等的三角形,即 .由全等三角形性质,易证DNE是 三角形,进而得出结论.(2)如图2, 在的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(3)当AB=5,CE=3时,正方形的顶点C、E、F、G按顺时针排列.若点在直线CD上,则DM= ;若点E在直线BC上,则DM= .【参考答案】一、选择题1C解析:C【分析】一般地,我们把形如(a0)的式子叫做二次根式直接利用二次根式的定义分别分析得出答案【详解】(A)当时,此时原式无意义,故A不一定

9、是二次根式;(B)当时,此时原式无意义,故B不一定是二次根式;(C)0恒成立,故C一定是二次根式;(D)当时,此时原式无意义,故D不一定是二次根式;故选:C【点睛】本题主要考查了二次根式的定义,理解二次根式中被开方数是非负数是解决问题的关键2A解析:A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形如果没有这种关系,这个就不是直角三角形【详解】解:A、42+6282,不符合勾股定理的逆定理,故本选项符合题意;B、32+42=52,符合勾股定理的逆定理,故本选项不符合题意;C、52+122=132,符合勾股定理的逆定理,故本选项不符合题意;D、1

10、2+32=,符合勾股定理的逆定理,故本选项符合题意故选:A【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断3B解析:B【解析】【分析】根据已知条件可以得到,对选项判断即可求出解【详解】解:D,E分别是AB,BC的中点,A:根据BF得不出四边形ADFC为平行四边形,选项不符合题意;B:BBCF,四边形ADFC为平行四边形,选项符合题意;C:根据ACCF得不出四边形ADFC为平行四边形,选项不符合题意;D:根据ADCF得不出四边形ADFC为平行四边形,选项不符合题意;故答案为B【

11、点睛】此题考查了中位线的性质以及平行四边形的判定,熟练掌握有关性质即判定方法是解题的关键4B解析:B【解析】【分析】根据加权平均数的定义列式计算即可【详解】解:小华的最后得分为9030%+9450%+9220%=92.4(分),故选:B【点睛】本题主要考查了加权平均数,解题的关键是掌握加权平均数的定义5B解析:B【分析】作EFAD于F,证明EBAEFA,故(2)不正确;证明RtDCEDFE,得到DE平分CDA;故(1)正确;当EBADCE时,得到AB=CD,与原图矛盾,故(3)不正确;根据EBAEFA,RtDCEDFE,得到AB=AF,DC=DF,得到AB+CD=AF+DF=AD,故(4)正确

12、;证明AED=90,得到AE2+DE2=AD2,故(5)正确问题得解【详解】解:如图,作EFAD于F,则AFE=DFE=90,B=C=90,B=AFE=90,AE平分DAB,FAE=BAE,AE=AE,EBAEFA,故(2)不正确;EBAEFA,EB=EF,E是BC的中点,CE=BE,EF=EC,又DE=DE,RtDCEDFE,CDE=FDE,DE平分CDA;故(1)正确;当EBADCE时,AB=EC,BE=CD,由题意得BE=CE,可得AB=CD,与原图矛盾,故(3)不正确;EBAEFA,RtDCEDFE,AB=AF,DC=DF,AB+CD=AF+DF=AD,故(4)正确;B=C=90,B+

13、C=180,ABCD,BAD+CDA=180,FAE=BAE,CDE=FDE,EDA+EAD=90,AED=90,AE2+DE2=AD2,故(5)正确故选:B【点睛】本题考查了全等三角形的判定与性质,勾股定理等知识,根据题意添加辅助线,证明EBAEFA、RtDCEDFE是解题关键6D解析:D【解析】【分析】设,则,根据勾股定理即可求得的长,利用表示出,同理表示出,根据,即可求得的值,进而求得三角形的面积【详解】解:设,则,设,则,在直角中,根据勾股定理可得:,解得:,则,同理可得:,解得:,纸片的面积是:,故选:D【点睛】本题主要考查了翻折变换(折叠问题),三角形面积的计算,根据勾股定理求得C

14、D的长是解题的关键7D解析:D【解析】【分析】首先在直角三角形中,利用勾股定理可以求出线段PB的长度,然后根据PB=PC即可求出OC的长度,接着可以求出数轴上点C所表示的数【详解】解:,PB=PC,点C的数为,故选:D【点睛】此题主要考查了实数与数轴之间的对应关系,首先正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断8A解析:A【分析】由函数图象数据可以求出甲的速度,再由追击问题的数量关系建立方程就可以求出乙的速度;由函数图象的数据由乙到达终点时走的路程-甲走的路程就可以求出结论;乙或甲行驶的路程就是乙追上甲时,两人距A地的距离;求出乙到达终点的路程就是A,B两地距

15、离【详解】解:由题意,得甲的速度为:124=3千米/时;设乙的速度为a千米/时,由题意,得(7-4)a=37,解得:a=7即乙的速度为7千米/时,故正确;乙到终点时甲、乙相距的距离为:(9-4)7-93=8千米,故正确;当乙追上甲时,两人距A地距离为:73=21千米故正确;A,B两地距离为:7(9-4)=35千米,故错误综上所述:错误的只有故选:A【点睛】本题考查了从函数图象获取信息,行程问题的追击题型的等量关系的运用,一元一次方程的运用,解答时分析清楚函数图象的数据之间的关系是关键二、填空题9且【解析】【分析】根据分式的分母不能为0,二次根式的被开方数大于或等于0列出式子求解即可【详解】由题

16、意得:3-5x0且x+10,解得 x且 x1 ,故答案为: x且 x1【点睛】本题考查了分式和二次根式有意义的条件,解题的关键是熟练掌握分式和二次根式的定义10A解析:120【解析】【分析】在RtAOB中,AO2+BO2=AB2,从而求出BO,继而得出BD,根据菱形的面积等于对角线乘积的一半可得出答案【详解】解:四边形ABCD是菱形,AO=OC,BO=DO,ACBDAC=24,AO=AC=12,在RtAOB中,AO2+BO2=AB2,又AB=13,BO=5,BD=10,S菱形ABCD=ACBD1024120,菱形ABCD的面积为120故答案为:120【点睛】本题考查菱形的性质,属于中等难度的题

17、目,解答本题关键是掌握菱形的对角线互相垂直且平分,菱形的面积等于底乘以底边上的高,还等于对角线乘积的一半11A解析:【解析】【分析】求出三角形ABC的面积,再根据三角形的面积公式即可求得AC边上的高【详解】解:三角形的面积等于正方形的面积减去三个直角三角形的面积,即=6,设AC上的高为h,则SABC=ACh=6,AC=,AC边上的高h=,故答案为:【点睛】本题考查三角形的面积公式、勾股定理,首先根据大正方形的面积减去三个直角三角形的面积计算,再根据勾股定理求得AC的长,最后根据三角形的面积公式计算12B解析:5【分析】根据勾股定理得出BD,进而利用矩形的性质得出OC即可【详解】解:四边形ABC

18、D是矩形,BAD90,ACBD,OCOA,在RtABD中,BD,OCAC故答案为:6.5【点睛】此题考查矩形的性质和勾股定理,解答此题的关键是由矩形的性质和根据勾股定理得出BD解答13y=2x-4【分析】由一次函数的图象经过(2,0),(0,-4)两点,可设一次函数解析式为y=kx+b(k0)然后将点的坐标代入解析式,故得2k+b=0,b=-4进而推导出函数解析式为y=2x-4【详解】解:设该一次函数的解析式为:y=kx+b(k0)由题意得:,解得:,该一次函数的解析式为y=2x-4故答案为:y=2x-4【点睛】本题主要考查用待定系数法求一次函数解析式,熟练掌握用待定系数法求一次函数解析式是解

19、决本题的关键14B解析:BE=DF【分析】根据正方形的性质,可得正方形的四条边相等,对角线平分对角,根据 SAS,可得ABF与CBF与CDE与ADE的关系,根据三角形全等,可得对应边相等,再根据四条边相等的四边形,可得证明结果【详解】添加的条件为:BE=DF,理由:正方形ABCD中,对角线BD,AB=BC=CD=DA,ABE=CBE=CDF=ADF=45BE=DF,ABECBEDCFDAF(SAS)AE=CE=CF=AF,四边形AECF是菱形;故答案为:BE=DF【点睛】本题考查了正方形的性质,菱形的判定,全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键15或【分析】分两种情况

20、:当点P在y轴左侧时,由条件可判定APBO,容易求得P点坐标;当点P在y轴右侧时,可设P点坐标为(a,a4),过AP作直线交x轴于点C,可表示出直线AP的解析式,可表示解析:或【分析】分两种情况:当点P在y轴左侧时,由条件可判定APBO,容易求得P点坐标;当点P在y轴右侧时,可设P点坐标为(a,a4),过AP作直线交x轴于点C,可表示出直线AP的解析式,可表示出C点坐标,再根据勾股定理可表示出AC的长,由条件可得到ACBC,可得到关于a的方程,可求得P点坐标【详解】解:当点P在y轴左侧时,如图1,连接AP,PABABO,APOB,A(0,8),P点纵坐标为8,又P点在直线xy4上,把y8代入可

21、求得x4,P点坐标为(4,8);当点P在y轴右侧时,过A、P作直线交x轴于点C,如图2,设P点坐标为(a,a4),设直线AP的解析式为ykxb,把A、P坐标代入可得,解得,直线AP的解析式为yx8,令y0可得x80,解得x,C点坐标为(,0),AC2OC2OA2,即AC2()282,B(4,0),BC2(4)2()216,PABABO,ACBC,AC2BC2,即()282()216,解得a12,则a48,P点坐标为(12,8),综上可知,P点坐标为(4,8)或(12,8)故答案为:(4,8)或(12,8)【点睛】本题主要考查一次函数的综合应用,涉及待定系数法、平行线的判定和性质、等腰三角形的性

22、质、分类讨论思想等知识点确定出P点的位置,由条件得到APOB或ACBC是解题的关键16【分析】根据矩形的性质得C=90,BC=AD=10cm,CD=AB=6cm,当折痕EF移动时点A在BC边上也随之移动,由此可以得到,当点E与B重合时,最小,当F与D重合时,最大,据此画图求解析:【分析】根据矩形的性质得C=90,BC=AD=10cm,CD=AB=6cm,当折痕EF移动时点A在BC边上也随之移动,由此可以得到,当点E与B重合时,最小,当F与D重合时,最大,据此画图求解即可.【详解】解:四边形ABCD是矩形C=90,BC=AD=10cm,CD=AB=6cm当点E与B重合时,最小,如图所示:此时当F

23、与D重合时,最大,如图所示:此时的取值范围为:故答案为:.【点睛】本题主要考查了矩形与折叠,勾股定理等等,解题的关键在于确定E、F的位置.三、解答题17(1)2;(2)【分析】(1)先分别化简二次根式,再合并同类二次根式即可得到答案;(2)先计算乘方,同时化简二次根式,将除法化为乘法,计算乘除法,再化简结果【详解】解:(1)=10-9解析:(1)2;(2)【分析】(1)先分别化简二次根式,再合并同类二次根式即可得到答案;(2)先计算乘方,同时化简二次根式,将除法化为乘法,计算乘除法,再化简结果【详解】解:(1)=10-9+=2;(2)=【点睛】此题考查二次根式的加减法计算法则,及混合运算的计算

24、法则,正确掌握二次根式的加减法法则、混合运算的法则、二次根式的化简方法是解题的关键18需要封闭,理由见解析【分析】过作于 先求解 再利用等面积法求解 再与260比较,可得答案.【详解】解:过作于 所以进行爆破时,公路BC段需要暂时封闭.【点睛】解析:需要封闭,理由见解析【分析】过作于 先求解 再利用等面积法求解 再与260比较,可得答案.【详解】解:过作于 所以进行爆破时,公路BC段需要暂时封闭.【点睛】本题考查的是勾股定理的应用,利用等面积法求解直角三角形斜边上的高,掌握“等面积法求解直角三角形斜边上的高”是解题的关键.19(1)见解析;(2)见解析;周长为4+2【解析】【分析】(1)直接利

25、用网格结合正方形的性质得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出答案【详解】(1)解析:(1)见解析;(2)见解析;周长为4+2【解析】【分析】(1)直接利用网格结合正方形的性质得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出答案【详解】(1)如图1,将绕点逆时针旋转得,将绕点顺时针旋转得,连接,正方形ABCD即为所求(2)如图2所示,SABEF由题意可知:平行四边形ABEF即为所求周长为【点睛】本题考查作图、勾股定理、正方形的性质等知识,解题的关键是理解题意,学会利用数形结合的思想思考问题20(1)菱形,理由见解析;(2)【分析】(1

26、)根据矩形的性质,可知,进而可得,根据折叠的性质可知,则,进而可得,又,根据四边相等的四边形是菱形即可判断;(2)连接,先根据折叠的性质,利用勾股定理解析:(1)菱形,理由见解析;(2)【分析】(1)根据矩形的性质,可知,进而可得,根据折叠的性质可知,则,进而可得,又,根据四边相等的四边形是菱形即可判断;(2)连接,先根据折叠的性质,利用勾股定理求得,进而勾股定理求得,根据菱形的面积即可求得【详解】(1)四边形是矩形,根据折叠的性质,可知,四边形是菱形;(2)连接,如图,四边形是矩形,折叠,设,则,在中,即,解得,【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,菱形的性质与判定,灵活晕用勾

27、股定理是解题的关键21(1);(2)【解析】【分析】(1)首先理解题意,根据题目的解析,即可利用两种不同的方法化简求得答案;(2)结合题意,可将原式化为(-+-+-+-),继而求得答案【详解】解:(1)解析:(1);(2)【解析】【分析】(1)首先理解题意,根据题目的解析,即可利用两种不同的方法化简求得答案;(2)结合题意,可将原式化为(-+-+-+-),继而求得答案【详解】解:(1)方法一:=-;方法二:=-;(2)原式=(-+-+-+)=()=-故答案为(1)-;(2)-【点睛】此题考查了分母有理化的知识此题难度较大,解题的关键是理解题意,掌握分母有理化的两种方法22(1)见解析;(2)秤

28、钩上所挂物体的重量y是秤纽的水平距离的函数,解析式为yx;(3)当秤钩所挂物重是4.5斤时,秤杆上秤砣到秤纽的水平距离为16厘米【分析】(1)利用描点法画出图形即可判解析:(1)见解析;(2)秤钩上所挂物体的重量y是秤纽的水平距离的函数,解析式为yx;(3)当秤钩所挂物重是4.5斤时,秤杆上秤砣到秤纽的水平距离为16厘米【分析】(1)利用描点法画出图形即可判断(2)设函数关系式为ykxb,利用待定系数法解决问题即可;(3)把y4.5代入(2)中解析式,求出x即可【详解】解:(1)如图所示:(2)由(1)图形可知,秤钩上所挂物体的重量y是秤纽的水平距离的函数,设ykxb,把x1,y0.75,x2

29、,y1代入可得:,解得:,yx;(3)当y4.5时,即4.5x,解得:x16,当秤钩所挂物重是4.5斤时,秤杆上秤砣到秤纽的水平距离为16厘米【点睛】本题考查一次函数的应用,待定系数法等知识,解题的关键是在直角坐标系内描出表中数据对应的点,通过图形求函数解析23(1)见解析;2;(2)不变,12;(3)能,或6或【分析】(1)由平移的特征可以推出三角形全等的条件,证明IBCHCE;由得ICHE,再证明四边形ICHG是平行四边形,得I解析:(1)见解析;2;(2)不变,12;(3)能,或6或【分析】(1)由平移的特征可以推出三角形全等的条件,证明IBCHCE;由得ICHE,再证明四边形ICHG是

30、平行四边形,得ICGH,再证明DFGCFI,得DGIC,于是得DGGHHEDEAC,可求出DG的长;(2)由平行四边形的性质可证明线段相等和角相等,证明AOPCOQ,将四边形ABQP的面积转化为ABC的面积,说明四边形ABQP的面积不变,求出ABC的面积即可;(3)按OPOA、PAOA、OPAP分类讨论,分别求出相应的PQ的长,其中,当PAOA时,作OLAP于点L,构造直角三角形,用面积等式列方程求OL的长,再用勾股定理求出OP的长即可【详解】(1)证明:如图1,是由平移得到的, , 如图1,由可知: ,CIGH,CHGH,四边形是平行四边形, , , , , , .(2)面积不变;如图2:由

31、平移可知,四边形是平行四边形, , ,四边形ABQP的面积不变. , ,在中 , , (3)如图3,OPOA3,由(2)得,AOPCOQ,OQOP3,PQ336;如图4,PAOA3,作OLAP于点L,则OLAOLP90,由(2)得,四边形ABCD是平行四边形,OA3,AOB90,ODOB4,AOD180AOB90,AOBD,ODOB,AO垂直平分BD,ADAB5,由ADOLOAOD 得,5OL34,解得,OL , , , ,PQ2OP;如图5,OPAP,ADAB,ACBD,DACBAC,POADACBAC,PQAB,APBQ,四边形ABQP是平行四边形,PQAB5,综上所述,或6或.【点睛】此

32、题重点考查平行四边形的判定与性质、全等三角形的判定与性质、等腰三角形的判定、平移的特征、勾股定理以及根据面积等式列方程求线段的长度等知识与方法,解第(3)题时要进行分类讨论,求出所有符合条件的值,此题难度较大,属于考试压轴题24(1);(2);(3)或或【解析】【分析】(1)连接,作,交的延长线于点,可知,再根据,可得,又因为,得到,即可证明,所以可得,再计算的长度即可求解;(2)设,即可表示出、的长度,根据求解析:(1);(2);(3)或或【解析】【分析】(1)连接,作,交的延长线于点,可知,再根据,可得,又因为,得到,即可证明,所以可得,再计算的长度即可求解;(2)设,即可表示出、的长度,

33、根据求出的值,即可得到点的坐标,再设直线的解析式为,将、两点的坐标代入即可;(3)设点坐标为,因为平分,所以,最后分三种情况进行讨论即可【详解】(1),连接,作,交的延长线于点,如图,即,在中, ,又,,,;(2) 设,由(1)可知,与都是直角三角形,且,解得,又,设直线的解析式为,则,解得,直线的解析式为;(3)设点坐标为,平分,当时,则,与重合,;当时,过点作,垂足为,则,又,在中,由勾股定理可求得,在中,在中,解得,;当时,延长交轴于点,且,过点作,垂足为,则,在中,由勾股定理可求得,设直线的解析式为,则,解得,直线解析式为,当时,解得,综上所述,当为等腰三角形时,点坐标为或或【点睛】本

34、题是四边形的综合题,考查了矩形的性质、三角形内角和定理、全等三角形的性质和判定、勾股定理、待定系数法求函数解析式等知识点,解题要注意分类讨论的思想25(1)等腰直角;(2)结论仍成立,见解析;(3)或,.【分析】(1)结论:DMEM,DM=EM只要证明AMHFME,推出MH=ME,AH=EF=EC,推出DH=DE,因为EDH=90解析:(1)等腰直角;(2)结论仍成立,见解析;(3)或,.【分析】(1)结论:DMEM,DM=EM只要证明AMHFME,推出MH=ME,AH=EF=EC,推出DH=DE,因为EDH=90,可得DMEM,DM=ME;(2)结论不变,证明方法类似;(3)分两种情形画出图

35、形,理由勾股定理以及等腰直角三角形的性质解决问题即可;【详解】解:(1) AMN FME ,等腰直角.如图1中,延长EM交AD于H四边形ABCD是正方形,四边形EFGC是正方形,AMHFME,DMEM,DM=ME(2)结论仍成立. 如图,延长EM交DA的延长线于点H,四边形ABCD与四边形CEFG都是正方形,,,ADEF,.,,AMFFME(ASA), ,,.在DHE中,,,DMEM.(3)当E点在CD边上,如图1所示,由(1)的结论可得三角形DME为等腰直角三角形,则DM的长为,此时,所以;当E点在CD的延长线上时,如图2所示,由(2)的结论可得三角形DME为等腰直角三角形,则DM的长为,此

36、时 ,所以 ;当E点在BC上是,如图三所示,同(1)、(2)理可得到三角形DME为等腰直角三角形,证明如下:四边形ABCD与四边形CEFG都是正方形, 且点E在BC上AB/EF,M为AF中点,AM=MF在三角形AHM与三角形EFM中: ,AMHFME(ASA), ,,.在三角形AHD与三角形DCE中: ,AHDDCE(SAS),ADC=ADH+HDC=90,HDE=CDE+HDC=90,在DHE中,,三角形DME为等腰直角三角形,则DM的长为,此时在直角三角形DCE中 ,所以 【点睛】本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质,灵活运用相关的定理、正确作出辅助线是解题的关键

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服