1、八年级下册数学期末试卷检测题(WORD版含答案)一、选择题1化简的结果是( )ABC-4D42下列由线段a,b,c组成的三角形不是直角三角形的是()Aa:b:c1:2:3Ba,b1,cCa4,b5,cDa3,b4,c53如图,在四边形ABCD中,下列条件不能判定四边形ABCD是平行四边形的是( )AABDC, ADBCBABDC,ADBCCADBC,ABDCDABDC,ABDC4为了解居民用水情况,在某小区随机抽查记录了20户家庭的月用水量,汇总结果如表:月用水量(吨)45689户数121331则关于这20户家庭的月用水量,下列说法正确的是()A月用水量的众数是9吨B月用水量的众数是13吨C月
2、用水量的中位数是6吨D月用水量的平均数是6吨5如图,在ABC中,AC6,AB8,BC10,点D是BC的中点,连接AD,分别以点A,B为圆心,CD的长为半径在ABC外画弧,两弧交于点E,连接AE,BE则四边形AEBC的面积为( )A30B30C24D366如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DHAB于点H,连接OH,若DHO20,则ADC的度数是()A120B130C140D1507如图,点P为正方形ABCD对角线BD的延长线上一点,点M为AD上一点,连接CP,BM,MP,已知AB4,AM1,BMPM,则CP()A4BC4D58如图,在矩形ABCD中,AB AD,对角线AC、
3、BD相交于点O,动点P从点A出发,沿ABCD向点D运动设点P的运动路程为x,AOP的面积为y,y与x的函数关系图象如图所示,则下列结论错误的是( )A四边形ABCD的面积为12BAD边的长为4C当x=2.5时,AOP是等边三角形DAOP的面积为3时,x的值为3或10二、填空题9二次根式中字母x的取值范围是_10若菱形的两条对角线长分别是8cm和10cm,则该菱形的面积是_11已知中,则_12如果矩形的两条对角线所成的钝角是,那么对角线与短边之比为_13过点,则_14如图,在中,已知E、F、D分别是AB、AC、BC上的点,且,请你添加一个_条件,使四边形AEDF是菱形15甲从地出发以某一速度向地
4、走去,同时乙从地出发以另一速度向地而行,如图中的线段、分别表示甲、乙离地的距离()与所用时间的关系则、两地之间的距离为_,甲、乙两人相距时出发的时间为_16如图,在平面直角坐标系中,直线轴,且,过点作直线与轴负半轴交于点.已知点关于直线的对称点为,连结,并延长交轴于点.当时,则点的坐标为_.三、解答题17计算:(1)(2)18如图,一架长的梯子斜靠在一面竖直的墙上,这时梯子的底端B到墙的底端C的距离为,如果梯子的顶端沿墙下滑,那么梯子的底端将向外移多少米?19如图,在平面直角坐标系中,网格中每一个小正方形的边长都是1个单位长度(1)画出ABC关于y轴对称的图形ABC,写出C的坐标;(2)求AB
5、C中AC边上的高20如图,的对角线,相交于点,且,求证:是菱形21求的值解:设x=,两边平方得:,即,x2=10x=0,=请利用上述方法,求的值22为了做好开学准备,某校共购买了20桶A、B两种桶装消毒液,进行校园消杀,以备开学已知A种消毒液300元/桶,每桶可供2000米2的面积进行消杀,B种消毒液200元/桶,每桶可供1000米2的面积进行消杀(1)设购买了A种消毒液x桶,购买消毒液的费用为y元,写出y与x之间的关系式,并指出自变量x的取值范围;(2)在现有资金不超过5300元的情况下,求可消杀的最大面积23在中,将沿方向平移得到,的对应点分别是、,连接交于点(1)如图1,将直线绕点顺时针
6、旋转,与、分别相交于点、,过点作交于点求证:若,求的长;(2)如图2,将直线绕点逆时针旋转,与线段、分别交于点、,在旋转过程中,四边形的面积是否发生变化?若不变,求出四边形的面积,若变化,请说明理由;(3)在(2)的旋转过程中,能否为等腰三角形,若能,请直接写出的长,若不能,请说明理由24直线:交x轴于A,交y轴于B(1)求的长;(2)如图1,直线关于y轴对称的直线交x轴于点C,直线:经过点C,点D、T分别在直线、上若以A、B、D、T为顶点的四边形是平行四边形,求点D的坐标;(3)如图2,平行y轴的直线交x轴于点E,将直线向上平移5个单位长度后交x轴于M,交y轴于N,交直线于点P点在四边形内部
7、,直线交于G,直线交于H,求的值25如图,在四边形是边长为4的正方形点P为OA边上任意一点(与点不重合),连接CP,过点P作,且,过点M作,交于点联结,设.(1)当时,点的坐标为( , )(2)设,求出与的函数关系式,写出函数的自变量的取值范围.(3)在轴正半轴上存在点,使得是等腰三角形,请直接写出不少于4个符合条件的点的坐标(用的式子表示)【参考答案】一、选择题1D解析:D【分析】根据完全平方公式因式分解,再利用二次根式的性质化简解题即可【详解】解:由题意得,故选:D【点睛】本题考查完全平方公式因式分解、二次根式的化简、二次根式由意义的条件等知识,是重要考点,掌握相关知识是解题关键2A解析:
8、A【分析】运用勾股定理的逆定理进行计算求解即可判断.【详解】解:A、,设,(其中k0),故选项A中的三条线段不能构成直角三角形;B、12+()2()2,故选项B中的三条线段能构成直角三角形;C、42+52()2,故选项C中的三条线段能构成直角三角形;D、32+4252,故选项D中的三条线段能构成直角三角形;故选A【点睛】本题主要考查了勾股定理的逆定理,解题的关键在于能够熟练掌握勾股定理的逆定理.3C解析:C【解析】【分析】注意题目所问是“不能”,根据平行四边形的判定条件可解出此题【详解】解:平行四边形的判定条件:A、根据两组对边分别平行的四边形是平行四边形可判定,不符合题意; B、根据两组对边
9、分别相等的四边形是平行四边形可判定,不符合题意;C、可能是等腰梯形,不能判定,符合题意;D、根据一组对边平行且相等的四边形是平行四边形可判定,不符合题意; 故选:C【点睛】本题主要考查平行四边形的性质,掌握平行四边形的基本性质是解答本题的关键4C解析:C【解析】【分析】根据表格中的数据,可以得到这组数据的中位数,众数和平均数,从而可以解答本题【详解】解:由表格中的数据可得,月用水量的众数是6吨,故选项A、B错误;月用水量的中位数是(6+6)2=6(吨),故选项C正确;月用水量的平均数是:=6.25(吨),故选项D错误;故选:C【点睛】本题考查众数、中位数和加权平均数,解答本题的关键是计算出这组
10、数据的平均数和中位数5D解析:D【分析】根据勾股定理的逆定理求出,求出,根据菱形的判定求出四边形是菱形,根据菱形的性质求出,求出,再求出四边形的面积即可【详解】解:,是直角三角形,即,点是的中点,即,四边形是菱形,四边形的面积是,故选:D【点睛】本题考查了勾股定理的逆定理,直角三角形斜边上的中线的性质,菱形的性质和判定,三角形的面积等知识点,解题的关键是能求出是解此题的关键,注意:如果一个三角形的两边、的平方和等于第三边的平方,那么这个三角形是直角三角形,等底等高的三角形的面积相等6C解析:C【解析】【分析】由四边形ABCD是菱形,可得OBOD,ACBD,又由DHAB,DHO20,可求得OHB
11、的度数,然后由直角三角形斜边上的中线等于斜边的一半,证得OBH是等腰三角形,继而求得ABD的度数,然后求得ADC的度数【详解】四边形ABCD是菱形,OBOD,ACBD,ADCABC,DHAB,OHOBBD,DHO20,OHB90DHO70,ABDOHB70,ADCABC2ABD140,故选C【点睛】本题考查了菱形的性质、直角三角形的性质以及等腰三角形的判定与性质,证得OBH是等腰三角形是关键7B解析:B【解析】【分析】过点M作MEBP于E,过点P作PFBC交BC延长线于F,先根据正方形的性质得到MD=AD-AM=3,DME=DBC=45,再由勾股定理求出,即可得到,由三线合一定理得到,再利用勾
12、股定理求出BF=PF=5,即可得到CF=1,再由求解即可【详解】解:如图所示,过点M作MEBP于E,过点P作PFBC交BC延长线于F,四边形ABCD是正方形,AD=AB=4,MDE=45,A=90MD=AD-AM=3,DME=DBC=45,ME=DE,,BM=PM,PBC=45,PFB=90,BPF=45,BF=PF,PF=BF=5,CF=BF-BC=1,故选B【点睛】本题主要考查了正方形的性质,勾股定理,等腰三角形的性质与判定 ,解题的关键在于能够熟练掌握相关知识进行求解8C解析:C【分析】过点P作PEAC于点E,根据AOP的边OA是一个定值,OA边上的高PE最大时是点P分别与点B和点D重合
13、,因此根据这个规律可以对各个选项作出判断【详解】A、过点P作PEAC于点E,当点P在AB和BC边上运动时,PE逐渐增大,到点B时最大,然后又逐渐减小,到点C时为0,而y=中,OA为定值,所以y是先增大后减小,在B点时面积最大,在C点时面积最小; 观察图知,当点P与点B重合时,AOP的的面积为3,此时矩形的面积为:43=12,故选项A正确;B、观察图知,当运动路程为7时,y的值为0,此时点P与点C重合,所以有AB+BC=7,又ABBC=12,解得:AB=3,BC=4,或AB=4,BC=3,但ABBC,所以AB=3,BC=4,根据四边形ABCD为矩形,所以AD=4,故选项B正确; C、当x=2.5
14、时,即x3,点P在边AB上由勾股定理,矩形的对角线为5,则OA=2.5,所以OA=AP,AOP是等腰三角形,但ABC是三边分别为3,4,5的直角三角形,故BAC不可能为60,从而AOP不是等边三角形,故选项C错误;D、当点P在AB和BC边上运动时,点P与点B重合时最大面积为3,此时x的值为3;当点P在边CD和DA上运动时,PE逐渐增大,到点D时最大,然后又逐渐减小,到点A时为0,而y=也是先增大再减小,在D点时面积最大,在A点时面积最小;所以当点P与点D重合时,最大面积为3,此时点P运动的路程为AB+BC+CD=10,即x=10,所以当x=3或10时,AOP的面积为3,故选项D正确故选:C【点
15、睛】本题是动点问题的函数图象,考查了函数的图象、图形的面积、矩形的性质、解方程等知识,关键是确定点P到AC的距离的变化规律,从而可确定y的变化规律,同时善于从函数图象中抓住有用的信息,获得问题的突破口二、填空题9【解析】【分析】根据二次根式成立的条件可直接进行求解【详解】解:由题意得:,解得:;故答案为【点睛】本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键1040【解析】【分析】根据菱形的面积公式计算即可【详解】解:这个菱形的面积为: 810=40cm2,故答案为:40【点睛】本题主要考查菱形的面积公式,熟知菱形的面积等于两条对角线乘积的一半是解题关键11A解析:4
16、【解析】【分析】直接利用勾股定理计算即可【详解】解:在RtABC中,C=90,AB=5,AC=3,故答案为:4【点睛】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方即如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2熟记定理是解题的关键12A解析:2:1【分析】如图所示,先根据AOD=120,得到AOB=60,从而证明三角形ABO是等边三角形,即可得到AB=AO,由此求解即可【详解】解:如图所示,四边形ABCD是矩形,BOC=AOD=120,AO=OB,AOB=180-AOD=60,AC=2AO,ABO是等边三角形,AB=AO,A
17、C=2AB,AC:AB=2:1,故答案为:2:1【点睛】本题主要考查了矩形的性质,等边三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解131【分析】把代入函数解析式即可求解【详解】代入得3=2k+1解得k=1故答案为:1【点睛】此题主要考查求一次函数的解析式,解题的关键是熟知待定系数法的运用14(不唯一)【分析】先根据平行四边形的判定可得四边形是平行四边形,再根据菱形的判定即可得【详解】解:,四边形是平行四边形,则当时,平行四边形是菱形,故答案为:(不唯一)【点睛】本题考查了平行四边形和菱形的判定,熟练掌握菱形的判定方法是解题关键152或3 【分析】利用路程的函数图象解得的解析式
18、,再求的值;根据题意列方程解答即可.【详解】解:设kxb,经过点P(2.5,7.5),(4,0) ,解得 ,解析:2或3 【分析】利用路程的函数图象解得的解析式,再求的值;根据题意列方程解答即可.【详解】解:设kxb,经过点P(2.5,7.5),(4,0) ,解得 ,5x20,当x0时,20答:AB两地之间的距离为20km根据题意得:或,解得:或.即出发2小时或3小时,甲、乙两人相距【点睛】此题主要考查了根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组熟练掌握相遇问题的解答也很关键16【分析】先根据已知条件得出B的坐标(12,16),然后根据等腰三角形
19、和勾股定理得出E点坐标(4,0),利用待定系数法可求得直线BD的解析式,即可求出D点坐标.【详解】作BFOC,垂足为F解析:【分析】先根据已知条件得出B的坐标(12,16),然后根据等腰三角形和勾股定理得出E点坐标(4,0),利用待定系数法可求得直线BD的解析式,即可求出D点坐标.【详解】作BFOC,垂足为F,B(12,16)ABOCABE=BEC关于直线的对称点为ABE=EBCBEC=EBCBC=EC=20在RtBFC中 EF=20-12=8OE=12-8=4E(4,0)设直线BD的解析式为y=kx+b,把点B,E代入解析式得 解得 直线BD的解析式为 ;所以D;故答案:【点睛】本题考查了一
20、次函数的解析式及交点、位置、勾股定理、对称等问题,掌握一次函数解析式和交点及找出等腰三角形是解题的关键.三、解答题17(1);(2)【分析】(1)先进行二次根式的化简,再进行二次根式的加减即可求解;(2)根据负整数指数幂,绝对值,0指数幂,二次根式化简等知识进行整理,再进行二次根式加减即可求解【详解】解析:(1);(2)【分析】(1)先进行二次根式的化简,再进行二次根式的加减即可求解;(2)根据负整数指数幂,绝对值,0指数幂,二次根式化简等知识进行整理,再进行二次根式加减即可求解【详解】解:(1);(2) 【点睛】本题考查了二次根式的混合运算,负整数指数幂,0指数幂,绝对值等知识,熟知相关知识
21、并正确进行化简是解题关键18米【分析】先在中,利用勾股定理出的长,再根据线段的和差可得的长,然后在中,利用勾股定理求出的长,最后根据即可得出答案【详解】解:由题意得:,在中,则,在中,则,答:梯子的底解析:米【分析】先在中,利用勾股定理出的长,再根据线段的和差可得的长,然后在中,利用勾股定理求出的长,最后根据即可得出答案【详解】解:由题意得:,在中,则,在中,则,答:梯子的底端将向外移米【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题关键19(1)作图见解析,点C的坐标为(-1,1);(2)AC边上的高为【解析】【分析】(1)分别作出A,B,C的对应点A,B,C即可(2)利用面积法求解
22、即可【详解】解:(1)如图,解析:(1)作图见解析,点C的坐标为(-1,1);(2)AC边上的高为【解析】【分析】(1)分别作出A,B,C的对应点A,B,C即可(2)利用面积法求解即可【详解】解:(1)如图,ABC即为所求作点C的坐标为(-1,1);(2)设ABC边上的高为h,AB=,BC=,AC=,,且AB=BC,ABC是等腰直角三角形,且AC为斜边,=h,h=即AC边上的高为【点睛】本题考查作图-轴对称变换,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型20见解析【分析】根据已知数据,先求证是,即,进而根据菱形的判定定理即可得证【详解】,是,即,四边形是平行四边形,四边形是
23、菱形【点睛】本题考查了勾股定理的逆定理解析:见解析【分析】根据已知数据,先求证是,即,进而根据菱形的判定定理即可得证【详解】,是,即,四边形是平行四边形,四边形是菱形【点睛】本题考查了勾股定理的逆定理,菱形的判定定理,勾股定理证得为是解题的关键21【解析】【分析】根据题意给出的解法即可求出答案即可【详解】设x=+,两边平方得:x2=()2+()2+2,即x2=4+4+6,x2=14x=+0,x=【点解析: 【解析】【分析】根据题意给出的解法即可求出答案即可【详解】设x=+,两边平方得:x2=()2+()2+2,即x2=4+4+6,x2=14x=+0,x=【点睛】本题考查了二次根式的运算,解题的
24、关键是正确理解题意给出的解法,本题属于中等题型22(1)y100x+4000(0x20且x为整数);(2)33000米2【分析】(1)根据题意,可以写出y与x之间的关系式,并写出自变量x的取值范围;(2)根据现有资金不超过5300元,解析:(1)y100x+4000(0x20且x为整数);(2)33000米2【分析】(1)根据题意,可以写出y与x之间的关系式,并写出自变量x的取值范围;(2)根据现有资金不超过5300元,可以求得x的取值范围,再根据题意,可以得到消杀面积与x的函数关系式,然后根据一次函数的性质,即可得到可消杀的最大面积【详解】解:(1)由题意可得,y300x+200(20x)1
25、00x+4000,即y与x之间的关系式为y100x+4000(0x20且x为整数);(2)现有资金不超过5300元,100x+40005300,解得,x13,设可消杀的面积为S米2,S2000x+1000(20x)1000x+20000,S随x的增大而增大,当x13时,S取得最大值,此时S33000,即可消杀的最大面积是33000米2【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答23(1)见解析;2;(2)不变,12;(3)能,或6或【分析】(1)由平移的特征可以推出三角形全等的条件,证明IBCHCE;由得ICHE,再证明四边形ICHG是平行四边形,得I解析:
26、(1)见解析;2;(2)不变,12;(3)能,或6或【分析】(1)由平移的特征可以推出三角形全等的条件,证明IBCHCE;由得ICHE,再证明四边形ICHG是平行四边形,得ICGH,再证明DFGCFI,得DGIC,于是得DGGHHEDEAC,可求出DG的长;(2)由平行四边形的性质可证明线段相等和角相等,证明AOPCOQ,将四边形ABQP的面积转化为ABC的面积,说明四边形ABQP的面积不变,求出ABC的面积即可;(3)按OPOA、PAOA、OPAP分类讨论,分别求出相应的PQ的长,其中,当PAOA时,作OLAP于点L,构造直角三角形,用面积等式列方程求OL的长,再用勾股定理求出OP的长即可【
27、详解】(1)证明:如图1,是由平移得到的, , 如图1,由可知: ,CIGH,CHGH,四边形是平行四边形, , , , , , .(2)面积不变;如图2:由平移可知,四边形是平行四边形, , ,四边形ABQP的面积不变. , ,在中 , , (3)如图3,OPOA3,由(2)得,AOPCOQ,OQOP3,PQ336;如图4,PAOA3,作OLAP于点L,则OLAOLP90,由(2)得,四边形ABCD是平行四边形,OA3,AOB90,ODOB4,AOD180AOB90,AOBD,ODOB,AO垂直平分BD,ADAB5,由ADOLOAOD 得,5OL34,解得,OL , , , ,PQ2OP;如
28、图5,OPAP,ADAB,ACBD,DACBAC,POADACBAC,PQAB,APBQ,四边形ABQP是平行四边形,PQAB5,综上所述,或6或.【点睛】此题重点考查平行四边形的判定与性质、全等三角形的判定与性质、等腰三角形的判定、平移的特征、勾股定理以及根据面积等式列方程求线段的长度等知识与方法,解第(3)题时要进行分类讨论,求出所有符合条件的值,此题难度较大,属于考试压轴题24(1);(2)点D的坐标为或或;(3)【解析】【分析】(1)根据直线的解析式求出其与x轴的交点A和与y轴的交点B的坐标,进而求出OA与OB的长度,再使用勾股定理即可求出AB的长度;(2)根解析:(1);(2)点D的
29、坐标为或或;(3)【解析】【分析】(1)根据直线的解析式求出其与x轴的交点A和与y轴的交点B的坐标,进而求出OA与OB的长度,再使用勾股定理即可求出AB的长度;(2)根据直线和直线关于y轴对称求出直线的解析式,再求出直线的解析式,根据点D在直线上,可设点,然后分类讨论点D是在线段BC上,还是在线段BC的延长线上,或者在线段CB的延长线上,在每一种情况下结合平行四边形的性质和平移的性质,可用含有m的式子表示点T的坐标,再根据点T在直线上求出m的值,即可求出点D的坐标;(3)根据平移的性质求出直线MN的解析式,再结合直线x=2求出点,点和点,进而求出ME的长度,然后再结合点求出直线和直线,进而求出
30、点和,即可得到GE与HE的长度,最后再代入计算即可【详解】解:(1)直线交x轴于A,交y轴于B,(2)直线关于y轴对称的直线交x轴于点C,直线交x轴与点,点A与点C关于y轴对称点在y轴上,直线经过点B设直线直线经过点,解得:直线直线经过点,解得:直线点D在直线上,设点如下图所示,当点D在线段上时四边形ABDT是平行四边形,BD经过平移之后到达AT点T在直线上,解得;如下图所示,当点D在线段的延长线上时四边形ABTD是平行四边形,AD经过平移之后到达BT点T在直线上,解得;如下图所示,当点D在线段的延长线上时四边形ADBT是平行四边形,BD经过平移之后到达TA点T在直线上,解得综上所述,点D的坐
31、标为或或(3)直线向上平移5个单位长度得到的直线解析式为直线x=2与x轴交于点E,与直线MN交于点P,直线MN交x轴于点M,设直线的解析式为,直线PF经过点与,解得直线的解析式为直线PF与x轴交于点G,解得:设直线OF的解析式为y=cx,直线OF经过点,解得:直线的解析式为直线OF与直线交于点H【点睛】本题考查了一次函数的综合应用,涉及坐标与长度的关系,勾股定理,轴对称和平移的性质,平行四边形的性质和判定定理,代数式求值,应用一次函数的性质正确求出点的坐标是解题关键25(1)点的坐标为;(2);(3), , 【分析】(1)过点作,由“”可证,可得,即可求点坐标;(2)由(1)可知,设OP=x,
32、则可得M点坐标为(4+x,x),由直线OB解析式可得N(x,解析:(1)点的坐标为;(2);(3), , 【分析】(1)过点作,由“”可证,可得,即可求点坐标;(2)由(1)可知,设OP=x,则可得M点坐标为(4+x,x),由直线OB解析式可得N(x,x),即可知MN=4,由一组对边平行而且相等的四边形是平行四边形即可证明四边形是平行四边形,进而可求与的函数关系式;(3)首先画出符合要求的点的图形,共分三种情况,第一种情况:当为底边时,第二种情况:当M为顶点为腰时,第三种情况:当N为顶点为腰时,然后根据图形特征结合勾股定理求出各种情况点的坐标即可解答【详解】解:(1)如图,过点作,且,且,点坐
33、标为故答案为(2)由(1)可知,点坐标为四边形是边长为4的正方形,点直线的解析式为:,交于点,点坐标为,且四边形是平行四边形 (3)在轴正半轴上存在点,使得是等腰三角形,此时点的坐标为:,其中,理由:当(2)可知,轴,所以共分为以下几种请:第一种情况:当为底边时,作的垂直平分线,与轴的交点为,如图2所示,第二种情况:如图3所示,当M为顶点为腰时,以为圆心,的长为半径画弧交轴于点、,连接、,则,;第三种情况,当以N为顶点、为腰时,以为圆心,长为半径画圆弧交轴正半轴于点,当时,如图4所示,则,即,当时,则,此时点与点重合,舍去;当时,如图5,以为圆心,为半径画弧,与轴的交点为,的坐标为:,所以,综上所述,使是等腰三角形【点睛】本题考查四边形综合题,解题的关键是明确题意,画出相应的图象,找出所求问题需要的条件,利用数形结合的思想解答问题