1、人教版中学七7年级下册数学期末复习(附答案)一、选择题1如图,直线EF与直线AB,CD相交图中所示的各个角中,能看做1的内错角的是( )A2B3C4D52下列运动属于平移的是( )A汽车在平直的马路上行驶B吹肥皂泡时小气泡变成大气泡C铅球被抛出D红旗随风飘扬3在平面直角坐标系中,下列点中位于第四象限的是( )ABCD4下列命题中:若,则点在原点处;点一定在第四象限已知点与点,m,n均不为0,则直线平行x轴;已知点A(2,-3),轴,且,则B点的坐标为(2,2)以上命题是真命题的有( )A1个B2个C3个D4个5直线,则( ) A15B25C35D206下列说法不正确的是( )ABC的平方根是D
2、的立方根是7如图,中,将边绕点按逆时针旋转一周回到原来位置,在旋转过程中,当时,求边旋转的角度,嘉嘉求出的答案是50,琪琪求出的答案是230,则下列说法正确的是( )A嘉嘉的结果正确B琪琪的结果正确C两个人的结果合在一起才正确D两个人的结果合在一起也不正确8如图,将边长为1的正方形沿轴正方向连续翻转2020次,点依次落在点、的位置上,则点的坐标为( )ABCD九、填空题9如果和互为相反数,那么_十、填空题10已知点关于轴的对称点为,关于轴的对称点为,那么点的坐标是_十一、填空题11如图,ABC中BAC60,将ACD沿AD折叠,使得点C落在AB上的点C处,连接CD与CC,ACB的角平分线交AD于
3、点E;如果BCDC;那么下列结论:12;AD垂直平分CC;B3BCC;DCEC;其中正确的是:_;(只填写序号)十二、填空题12已知ab,某学生将一直角三角板如图所示放置,如果130,那么2的度数为_十三、填空题13如图,将一张长方形纸片沿EF折叠后,点A,B分别落在A,B的位置如果159,那么2的度数是_十四、填空题14定义一种新运算“”规则如下:对于两个有理数,若,则_十五、填空题15如图,点A(1,0),B(2,0),C是y轴上一点,且三角形ABC的面积为2,则点C的坐标为_十六、填空题16如图,在平面直角坐标系中,横坐标和纵坐标都为整数的点称为整点观察图中每个正方形(实线)四条边上的整
4、点的个数,假如按图规律继续画正方形(实线),请你猜测由里向外第15个正方形(实线)的四条边上的整点共有_个十七、解答题17计算(1)(2)十八、解答题18求下列各式中的的值:(1); (2)十九、解答题19如图,已知12,BC,可推得ABCD理由如下:12(已知),且lCGD( )2CGDCEBF( ) BFD( )又BC(已知) ,ABCD( )二十、解答题20如图,在平面直角坐标系中,DABC的顶点 C的坐标为(1,3)点A、B分别在格点上(1)直接写出A、B两点的坐标;(2)若把DABC向上平移3个单位,再向右平移2个单位得DABC,画出DABC;(3)若DABC内有一点 M(m,n),
5、按照(2)的平移规律直接写出平移后点M的对应点 M的坐标二十一、解答题21阅读下面的文字,解答问题,例如:,即23,的整数部分为2,小数部分为(2)请解答:(1)的整数部分是 ,小数部分是 (2)已知:5小数部分是m,6+小数部分是n,且(x+1)2m+n,请求出满足条件的x的值二十二、解答题22如图,用两个边长为10的小正方形拼成一个大的正方形.(1)求大正方形的边长?(2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm2?二十三、解答题23已知点C在射线OA上(1)如图,CDOE,若AOB90,OCD120,求BOE的度数;(2)在中,将射线O
6、E沿射线OB平移得OE(如图),若AOB,探究OCD与BOE的关系(用含的代数式表示)(3)在中,过点O作OB的垂线,与OCD的平分线交于点P(如图),若CPO90,探究AOB与BOE的关系二十四、解答题24(1)学习了平行线以后,香橙同学想出了过一点画一条直线的平行线的新方法,她是通过折纸做的,过程如(图1)请你仿照以上过程,在图2中画出一条直线b,使直线b经过点P,且,要求保留折纸痕迹,画出所用到的直线,指明结果无需写画法:在(1)中的步骤(b)中,折纸实际上是在寻找过点P的直线a的 线(2)已知,如图3,BE平分,CF平分求证:(写出每步的依据)二十五、解答题25已知,如图1,直线l2l
7、1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3l1,点E在直线l3上,点D的下方(1)l2与l3的位置关系是 ;(2)如图1,若CE平分BCD,且BCD70,则CED ,ADC ;(3)如图2,若CDBD于D,作BCD的角平分线,交BD于F,交AD于G试说明:DGFDFG;(4)如图3,若DBEDEB,点C在射线AM上运动,BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索N:BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值【参考答案】一、选择题1B解析:B【分析】两条直线被第三条直线所截形成的角中,若
8、两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角根据内错角的边构成“Z”形判断即可【详解】解:由图可知:能看作1的内错角的是3,故选:B【点睛】本题主要考查同位角、内错角、同旁内角的定义,关键是掌握同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形2A【分析】根据平移的定义,对选项进行一一分析,排除错误答案【详解】解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合;B、吹肥皂泡时小气泡变成大气泡,不属于平移解析:A【分析】根据平移的定义,对选项进行一一分析,排除错误答案【详解】解:A、汽车在笔直公路上运动沿直线运动,
9、符合平移定义,属于平移,故A选项符合;B、吹肥皂泡时小气泡变成大气泡,不属于平移,故B选项不符合;C、铅球被抛出是旋转与平移组合,故C选项不符合;D、随风摆动的红旗,不属于平移,故D选项不符合故选:A【点睛】此题主要考查了平移定义,平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等3C【分析】根据各象限内点的坐标特征对各选项分析判断后利用排除法求解【详解】解:A、在y轴上,故本选项不符合题意;B、在第二象限,故本选项不符合题意;C、在第四象限,故本选项符合题意;D、在第三象限,故本选项不符合题意故选:C【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标
10、的符号是解题的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限4B【分析】利用有理数的性质和坐标轴上点的坐标特征可对进行判断;利用或可对进行判断;利用、点的纵坐标相同可对进行判断;通过把点坐标向上或向下平移5个单位得到点坐标可对进行判断【详解】解:若,则或,所以点坐标轴上,所以为假命题;,点一定在第四象限,所以为真命题;已知点与点,均不为0,则直线平行轴,所以为真命题;已知点,轴,且,则点的坐标为或,所以为假命题故选:B【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言任何一个命题非真即假要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,
11、只需举出一个反例即可5A【分析】分别过A、B作直线的平行线AD、BC,根据平行线的性质即可完成【详解】分别过A、B作直线AD、BC,如图所示,则ADBCBCCBF=2ADEAD=1=15DAB=EAB-EAD=125-15=110ADBCDAB+ABC=180ABC=180-DAB=180-110=70 CBF=ABF-ABC=85-70=152=15故选:A【点睛】本题考查了平行线的性质与判定等知识,关键是作两条平行线6D【分析】利用平方根、算术平方根及立方根的定义分别判断后即可确定正确的选项【详解】解:A、,正确,不符合题意;B、,正确,不符合题意;C、0.04的平方根是0.2,正确,不符
12、合题意;D、9的立方根是=3,故错误,符合题意;故选:D【点睛】本题考查了平方根、算术平方根及立方根的定义,属于基础性定义,比较简单7C【分析】分两种情况进行讨论,根据平行线的性质,周角的性质,三角形内角和的性质求解即可【详解】解:当点在点的右边时,如下图:为旋转的角度,即旋转角为当点在点的左边时,如下图:根据三角形内角和可得旋转的角度为综上所述,旋转角度为或故选C【点睛】此题考查了平行线的性质,三角形内角和的性质,周角的性质,熟练掌握相关基本性质是解题的关键8D【分析】探究规律,利用规律即可解决问题【详解】解:由题意,每4个一循环,则2021个纵坐标等于1轴,坐标应该是,故选:D【点睛】本题
13、考查了点的坐标的规律变化解析:D【分析】探究规律,利用规律即可解决问题【详解】解:由题意,每4个一循环,则2021个纵坐标等于1轴,坐标应该是,故选:D【点睛】本题考查了点的坐标的规律变化,解题的关键是根据正方形的性质,判断出每翻转4次为一个循环组是解题的关键,要注意翻转一个循环组点向右前行4个单位九、填空题9-2【分析】利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案【详解】解:和|y-2|互为相反数,x+1=0,y-2=0,解得:x=-1,y=2,xy解析:-2【分析】利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案【详解】解:和|y-2|互为相
14、反数,x+1=0,y-2=0,解得:x=-1,y=2,xy=-12=-2故答案为:-2【点睛】本题考查了绝对值和平方数的非负性互为相反数的两个数相加等于0,和|y-2|都是非负数,所以这个数都是0十、填空题10【分析】根据点坐标关于坐标轴的对称规律即可得【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴解析:【分析】根据点坐标关于坐标轴的对称规律即可得【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴的对称点为,
15、则点P的纵坐标为1点关于轴的对称点为,则点P的横坐标为2则点P的坐标为故答案为:【点睛】本题考查了点坐标关于坐标轴的对称规律,掌握对称规律是解题关键十一、填空题11【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,ACD沿AD折叠,使得点C落在AB上的点C处,1=2,A=AC,DC解析:【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,ACD沿AD折叠,使得点C落在AB上的点C处,1=2,A=AC,DC=D,AD垂直平分CC;,都正确;BD, DC=D,BD= DC,3=B,4=5,3=4+
16、5=25即B2BC;错误;根据折叠的性质,得ACD=AD=B+3=23,ACB的角平分线交AD于点E,2(6+5)=2B, D EC正确;故答案为:.【点睛】本题考查了折叠的性质,平行线的判定,外角的性质,线段垂直平分线的性质,熟练掌握各种基本性质是解题的关键.十二、填空题1260【分析】如图,由对顶角相等可得3,由平行线的性质可得4,由三角形的内角和定理可得5,再根据对顶角相等即得2【详解】解:如图,1=30,3=1=30,ab解析:60【分析】如图,由对顶角相等可得3,由平行线的性质可得4,由三角形的内角和定理可得5,再根据对顶角相等即得2【详解】解:如图,1=30,3=1=30,ab,4
17、=3=30,5=180490=60,2=5=60故答案为:60【点睛】本题考查了对顶角相等、平行线的性质和三角形的内角和定理等知识,属于常考题型,熟练掌握上述基础知识是解题关键十三、填空题1362【分析】根据折叠的性质求出EFB159,BFC1801EFB62,根据平行线的性质:两直线平行,同位角相等,两直线平行,内错角相等,两直线平行,同旁解析:62【分析】根据折叠的性质求出EFB159,BFC1801EFB62,根据平行线的性质:两直线平行,同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补:求出即可【详解】解:将一张长方形纸片沿EF折叠后,点A、B分别落在A、B的位置,159,
18、EFB159,BFC1801EFB62,四边形ABCD是矩形,ADBC,2BFC62,故答案为:62【点睛】本题考查了对平行线的性质和折叠的性质的应用,解此题的关键是求出BFC的度数,注意:两直线平行,同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补十四、填空题14【分析】根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答【详解】解:由题意得:(5x-x)(2)=1,-2(5x-x)-(-2)=-1,-8x+2=-1,解之得解析:【分析】根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答【详解】解:由题意得:(5x-x)(2)=1,-2(5x-x)-(-
19、2)=-1,-8x+2=-1,解之得:,故答案为【点睛】本题考查新定义下的实数运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键 十五、填空题15(0,4)或(0,-4)【分析】设ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答【详解】解:设ABC边AB上的高为h,A(1,0),解析:(0,4)或(0,-4)【分析】设ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答【详解】解:设ABC边AB上的高为h,A(1,0),B(2,0),AB=2-1=1,ABC的面积=1h=2,解得h=4,
20、点C在y轴正半轴时,点C为(0,4),点C在y轴负半轴时,点C为(0,-4),所以,点C的坐标为(0,4)或(0,-4)故答案为:(0,4)或(0,-4)【点睛】本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键十六、填空题1660【分析】运用从特殊到一般的推理归纳的思想,利用正方形为中心对称图形,分析其一条边上的整点个数,进而推断整个正方形的四条边上的整点【详解】解:第1个正方形,对于其中1条边,除去该边的一解析:60【分析】运用从特殊到一般的推理归纳的思想,利用正方形为中心对称图形,分析其一条边上的整点个数,进而推断整个正方形的四条边上的整点【详解】解:第1个正方形
21、,对于其中1条边,除去该边的一个端点,这条边有1个整点根据正方形是中心对称图形,则四条边共有41=4个整点,第2个正方形,对于其中1条边,除去该边的一个端点,这条边有2个整点根据正方形是中心对称图形,则四条边共有42=8个整点,第3个正方形,对于其中1条边,除去该边的一个端点,这条边共有3个整点根据正方形是中心对称图形,则四条边共有43=12个整点,第4个正方形,对于其中1条边,除去该边的一个端点,这条边共有4个整点根据正方形是中心对称图形,则四条边共有44=16个整点,第5个正方形,对于其中1条边,除去该边的一个端点,这条边共有5个整点根据正方形是中心对称图形,则四条边共有45=20个整点,
22、.以此类推,第15个正方形,四条边上的整点共有415=60个故答案为:60【点睛】本题主要考查了坐标与图形的性质,图形中的数字的变化规律准确找出每一个正方形(实线)四条边上的整点的个数与正方形序号的关系是解题的关键十七、解答题17(1);(2)【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可【详解】(1),(解析:(1);(2)【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可【详解】(1),(2),【点睛】本
23、题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行另外有理数的运算律在实数范围内仍然适用十八、解答题18(1)或;(2)【分析】(1)方程整理后,利用平方根定义开方即可求出x的值;(2)方程利用立方根定义开立方即可求出x的值【详解】解:(1),或(2),【点睛】此题考查了解析:(1)或;(2)【分析】(1)方程整理后,利用平方根定义开方即可求出x的值;(2)方程利用立方根定义开立方即可求出x的值【详解】解:(1),或(2),【点睛】此题考查了立方根,以及平
24、方根,熟练掌握运算法则是解本题的关键十九、解答题19见解析【分析】首先确定1=CGD是对顶角,利用等量代换,求得2=CGD,则可根据:同位角相等,两直线平行,证得:CEBF,又由两直线平行,同位角相等,证得角相等,易得:BFD=B,解析:见解析【分析】首先确定1=CGD是对顶角,利用等量代换,求得2=CGD,则可根据:同位角相等,两直线平行,证得:CEBF,又由两直线平行,同位角相等,证得角相等,易得:BFD=B,则利用内错角相等,两直线平行,即可证得:ABCD【详解】解:1=2(已知),且1=CGD(对顶角相等),2=CGD(等量代换),CEBF(同位角相等,两直线平行),C=BFD(两直线
25、平行,同位角相等),又B=C(已知),BFD=B(等量代换),ABCD(内错角相等,两直线平行)【点睛】本题主要考查了平行线的判定与性质注意数形结合思想的应用是解答此题的关键二十、解答题20(1),;(2)见解析;(3)【分析】(1)根据原点的位置确定点的坐标即可;(2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可;(3)将M(m,n)向上平移3个单位,再向右平移解析:(1),;(2)见解析;(3)【分析】(1)根据原点的位置确定点的坐标即可;(2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可;(3)将M(m,n)向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐
26、标+3即可得到的坐标【详解】(1)根据原点的位置确定点的坐标,则,;(2)将三点向上平移3个单位,再向右平移2个单位得到,在图中描出点,连接,DABC即为所求(3)将M(m,n)向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3【点睛】本题考查了平面直角坐标系的定义,平移的作图,根据平移的方向和距离确定点的坐标是解题的关键二十一、解答题21(1)4 ,;(2)x=0或-2【分析】(1)根据夹逼法可求的整数部分和小数部分;(2)首先估算出m,n的值,进而得出mn的值,可求满足条件的x的值【详解】(1)45,的整解析:(1)4 ,;(2)x=0或-2【分析】(1)根据夹逼法可求的整数部
27、分和小数部分;(2)首先估算出m,n的值,进而得出mn的值,可求满足条件的x的值【详解】(1)45,的整数部分是4,小数部分是4故答案为:4;(2)5小数部分是m,051,6+小数部分是nm=5-, n=6+-10=-4 m+n=1 (x+1)21x+1=1解得:x=0或-2【点睛】此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键二十二、解答题22(1)大正方形的边长是;(2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可【详解】(1)大正方形的边长是(2)设长方形纸解析:(1)大正方形的边长是;(2)不能【分析】(
28、1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可【详解】(1)大正方形的边长是(2)设长方形纸片的长为3xcm,宽为2xcm,则3x2x=480,解得:x=因为,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为2:3,且面积为480cm2【点睛】本题考查算术平方根,解题的关键是能根据题意列出算式二十三、解答题23(1)150;(2)OCD+BOE=360-;(3)AOB=BOE【分析】(1)先根据平行线的性质得到AOE的度数,再根据直角、周角的定义即可求得BOE的度数;(2)解析:(1)150;(2)OCD+BOE=360
29、-;(3)AOB=BOE【分析】(1)先根据平行线的性质得到AOE的度数,再根据直角、周角的定义即可求得BOE的度数;(2)如图,过O点作OFCD,根据平行线的判定和性质可得OCD、BOE的数量关系;(3)由已知推出CPOB,得到AOB+PCO=180,结合角平分线的定义可推出OCD=2PCO=360-2AOB,根据(2)OCD+BOE=360-AOB,进而推出AOB=BOE【详解】解:(1)CDOE,AOE=OCD=120,BOE=360-AOE-AOB=360-90-120=150;(2)OCD+BOE=360-证明:如图,过O点作OFCD,CDOE,OFOE,AOF=180-OCD,BO
30、F=EOO=180-BOE,AOB=AOF+BOF=180-OCD+180-BOE=360-(OCD+BOE)=,OCD+BOE=360-;(3)AOB=BOE证明:CPO=90,POCP,POOB,CPOB,PCO+AOB=180,2PCO=360-2AOB,CP是OCD的平分线,OCD=2PCO=360-2AOB,由(2)知,OCD+BOE=360-=360-AOB,360-2AOB+BOE=360-AOB,AOB=BOE【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键二十四、解答题24(1)见解析;垂;(2)见解析【分析】(1)
31、过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;步骤(b)中,折纸实际上是在寻找过点的直线的垂线(2)先根据解析:(1)见解析;垂;(2)见解析【分析】(1)过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;步骤(b)中,折纸实际上是在寻找过点的直线的垂线(2)先根据平行线的性质得到,再利用角平分线的定义得到,然后根据平行线的判定得到结论【详解】(1)解:如图2所示:在(1)中的步骤(b)中,折纸实际上是在寻找过点的直线的垂线故答案为垂;(2)证明:平分,平分(已知),(角平分线的定义),(已知),(两直线平行,内错角相等),(等量代换),
32、(等式性质),(内错角相等,两直线平行)【点睛】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了平行线的性质与判定二十五、解答题25(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论
33、;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论【详解】解:(1)直线l2l1,l3l1,l2l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)CE平分BCD,BCEDCEBCD,BCD70,DCE35,l2l3,CEDDCE35,l2l1,CAD90,ADC907020;故答案为:35,20;(3)CF平分BCD,BCFDCF,l2l1,CAD90,BCF+AGC90,CDBD,DCF+CFD90,AGCCFD,AGCDGF,DGFDFG;(4)N:BCD的值不会变化,等于;理由如下:l2l3,BEDEBH,DBEDEB,DBEEBH,DBH2DBE,BCD+BDCDBH,BCD+BDC2DBE,N+BDNDBE,BCD+BDC2N+2BDN,DN平分BDC,BDC2BDN,BCD2N,N:BCD【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键