资源描述
人教版中学七7年级下册数学期末复习卷(附答案)
一、选择题
1.如图所示,下列四个选项中不正确的是( )
A.与是同旁内角 B.与是内错角
C.与是对顶角 D.与是邻补角
2.下列各组图形可以通过平移互相得到的是( )
A. B.
C. D.
3.如果点P(12m,m)的横坐标与纵坐标互为相反数,则点P一定在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.给出以下命题:①对顶角相等;②在同一平面内, 垂直于同一条直线的两条直线平行;③相等的角是对顶角;④内错角相等.其中假命题有( )
A.1个 B.2个 C.3个 D.4个
5.如图所示,,三角板如图放置,其中,若,则的度数是( )
A. B. C. D.
6.下列说法中:①立方根等于本身的是,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )
A.3 B.4 C.5 D.6
7.一把直尺和一块直角三角尺(含30°、60°角)如图所示摆放,直尺的一边与三角尺的两直角边BC、AC分别交于点D、点E,直尺的另一边过A点且与三角尺的直角边BC交于点F,若∠CAF=42°,则∠CDE度数为( )
A.62° B.48° C.58° D.72°
8.如图,一个点在第一象限及x轴、y轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→(0,1)→(0,2)→…,且每秒移动一个单位,那么第2021秒时,点所在位置的坐标是( )
A.(3,44) B.(41,44) C.(44,41) D.(44,3)
九、填空题
9.如果和互为相反数,那么________.
十、填空题
10.点关于轴对称的点的坐标为_________.
十一、填空题
11.如图,在△ABC中,CD是它的角平分线,DE⊥AC于点 E.若BC=6cm,DE=2cm,则△BCD的面积为_____cm2
十二、填空题
12.已知,,,,且,请直接写出、、的数量关系________.
十三、填空题
13.如图所示,是用一张长方形纸条折成的,如果,那么___°.
十四、填空题
14.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=.
例如:(-3)☆2= = 2.
从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a,b(a≠b)的值,并计算a☆b,那么所有运算结果中的最大值是_____.
十五、填空题
15.如图,点A(1,0),B(2,0),C是y轴上一点,且三角形ABC的面积为2,则点C的坐标为_____.
十六、填空题
16.如图,点,,,,,……根据这个规律,探究可得点的坐标是________.
十七、解答题
17.(1)
(2)
十八、解答题
18.已知a+b=5,ab=2,求下列各式的值.
(1)a2+b2;
(2)(a﹣b)2.
十九、解答题
19.按逻辑填写步骤和理由,将下面的证明过程补充完整.
如图,,点在直线上,点、在直线上,且,点在线段上,连接,且平分.
求证:.
证明:( )
( )
(平角定义)
平分(已知)
( )
( )
(已知)
( )
(等量代换)
二十、解答题
20.如图,在边长为1个单位长度的小正方形网格中建立平面直角坐标系.已知三角形ABC的顶点A的坐标为A(-1,4),顶点B的坐标为(-4,3),顶点C的坐标为(-3,1).
(1)把三角形ABC向右平移5个单位长度,再向下平移4个单位长度得到三角形A′B′C′,请你画出三角形A′B′C′,并直接写出点A′的坐标;
(2)若点P(m,n)为三角形ABC内的一点,则平移后点P在△A′B′C′内的对应点P′的坐标为 .
(3)求三角形ABC的面积.
二十一、解答题
21.阅读下面的文字,解答问题,
例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).
请解答:(1)的整数部分是 ,小数部分是 .
(2)已知:5﹣小数部分是m,6+小数部分是n,且(x+1)2=m+n,请求出满足条件的x的值.
二十二、解答题
22.张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2.他不知能否裁得出来,正在发愁.李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?
二十三、解答题
23.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点.
(1)若∠DAP=40°,∠FBP=70°,则∠APB=
(2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由;
(3)利用(2)的结论解答:
①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由;
②如图3,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代数式表示)
二十四、解答题
24.如图所示,已知,点P是射线AM上一动点(与点A不重合),BC、BD分别平分和,分别交射线AM于点C、D,且
(1)求的度数.
(2)当点P运动时,与之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
(3)当点P运动到使时,求的度数.
二十五、解答题
25.如图①所示,在三角形纸片中,,,将纸片的一角折叠,使点落在内的点处.
(1)若,________.
(2)如图①,若各个角度不确定,试猜想,,之间的数量关系,直接写出结论.
②当点落在四边形外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,,,之间又存在什么关系?请说明.
(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是________.
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据同旁内角,内错角,对顶角,邻补角的定义逐项分析.
【详解】
A. 与是同旁内角,故该选项正确,不符合题意;
B. 与不是内错角,故该选项不正确,符合题意;
C. 与是对顶角,故该选项正确,不符合题意;
D. 与是邻补角,故该选项正确,不符合题意;
故选B.
【点睛】
本题考查了同旁内角,内错角,对顶角,邻补角的定义,理解定义是解题的关键.两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的两侧,那么这两个角叫做内错角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的同旁,那么这两个角叫做同旁内角.两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.
2.C
【分析】
根据平移不改变图形的形状和大小,进而得出答案.
【详解】
解:观察图形可知选项C中的图案通过平移后可以得到.
故选:C.
【点睛】
本题考查了图形的平移,正确掌握平移的性质是解题关键.
解析:C
【分析】
根据平移不改变图形的形状和大小,进而得出答案.
【详解】
解:观察图形可知选项C中的图案通过平移后可以得到.
故选:C.
【点睛】
本题考查了图形的平移,正确掌握平移的性质是解题关键.
3.B
【分析】
互为相反数的两个数的和为0,求出m的值,再判断出所求点的横纵坐标的符号,进而判断点P所在的象限.
【详解】
解:∵点P(1-2m,m)的横坐标与纵坐标互为相反数
∴
解得m=1
∴1-2m=1-2×1=-1,m=1
∴点P坐标为(-1,1)
∴点P在第二象限
故选B.
【点睛】
本题考查了点的坐标和相反数的定义,解决本题的关键是记住平面直角坐标系中各个象限内点的符号特点:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).
4.B
【分析】
根据对顶角的性质、平行线的判定和性质进行判断即可.
【详解】
解:①对顶角相等,是真命题;
②在同一平面内,垂直于同一条直线的两条直线平行,是真命题;
③相等的角不一定是对顶角,原命题是假命题;
④两直线平行,内错角相等,原命题是假命题.
故选:B.
【点睛】
考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的判定和性质,难度较小.
5.B
【分析】
作BD∥l1,根据平行线的性质得∠1=∠ABD=40°,∠CBD=∠2,利用角的和差即可求解.
【详解】
解:作BD∥l1,如图所示:
∵BD∥l1,∠1=40°,
∴∠1=∠ABD=40°,
又∵l1∥l2,
∴BD∥l2,
∴∠CBD=∠2,
又∵∠CBA=∠CBD+∠ABD=90°,
∴∠CBD=50°,
∴∠2=50°.
故选:B.
【点睛】
本题考查平行线的性质,角的和差等相关知识,重点掌握平行线的性质,难点是作辅线构建平行线.
6.A
【分析】
根据平方根和立方根的性质,以及无理数的性质判断选项的正确性.
【详解】
解:立方根等于本身的数有:,1,0,故①正确;
平方根等于本身的数有:0,故②错误;
两个无理数的和不一定是无理数,比如和的和是0,是有理数,故③错误;
实数与数轴上的点一一对应,故④正确;
是无理数,不是分数,故⑤错误;
从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确.
故选:A.
【点睛】
本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念.
7.B
【分析】
先根据平行线的性质求出∠CED,再根据三角形的内角和等于180°即可求出∠CDE.
【详解】
解:∵DE∥AF,∠CAF=42°,
∴∠CED=∠CAF=42°,
∵∠DCE=90°,∠CDE+∠CED+∠DCE=180°,
∴∠CDE=180°-∠CED-∠DCE=180°-42°-90°=48°,
故选:B.
【点睛】
本题主要考查了平行线的性质以及三角形内角和等于180°,熟练掌握平行线的性质:两直线平行,同位角相等是解决问题的关键.
8.D
【分析】
根据题意找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系即可.
【详解】
解:观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,
解析:D
【分析】
根据题意找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系即可.
【详解】
解:观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,
则可知当点离开x轴时的横坐标为时间的平方,当点离开y轴时的纵坐标为时间的平方,
此时时间为奇数的点在x轴上,时间为偶数的点在y轴上,
∵2021=452-4=2025-4,
∴第2025秒时,动点在(45,0),故第2021秒时,动点在(45,0)向左一个单位,再向上3个单位,
即(44,3)的位置.
故选:D.
【点睛】
本题考查了动点在平面直角坐标系中的运动规律,找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系,是解题的关键.
九、填空题
9.-2
【分析】
利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案.
【详解】
解:∵和|y-2|互为相反数,
∴,
∴x+1=0,y-2=0,
解得:x=-1,y=2,
∴xy
解析:-2
【分析】
利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案.
【详解】
解:∵和|y-2|互为相反数,
∴,
∴x+1=0,y-2=0,
解得:x=-1,y=2,
∴xy=-1×2=-2
故答案为:-2.
【点睛】
本题考查了绝对值和平方数的非负性.互为相反数的两个数相加等于0,和|y-2|都是非负数,所以这个数都是0.
十、填空题
10.【分析】
关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解.
【详解】
解:由点关于轴对称点的坐标为:,
故答案为.
【点睛】
本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握
解析:
【分析】
关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解.
【详解】
解:由点关于轴对称点的坐标为:,
故答案为.
【点睛】
本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键.
十一、填空题
11.6
【分析】
根据角平分线的性质计算即可;
【详解】
作,
∵CD是角平分线,DE⊥AC,
∴,
又∵BC=6cm,
∴;
故答案是6.
【点睛】
本题主要考查了角平分线的性质,准确计算是解题的关
解析:6
【分析】
根据角平分线的性质计算即可;
【详解】
作,
∵CD是角平分线,DE⊥AC,
∴,
又∵BC=6cm,
∴;
故答案是6.
【点睛】
本题主要考查了角平分线的性质,准确计算是解题的关键.
十二、填空题
12.(上式变式都正确)
【分析】
过点E作,过点F作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.
【详解】
解:如图
解析:(上式变式都正确)
【分析】
过点E作,过点F作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.
【详解】
解:如图所示,过点E作,过点F作,
∵,
∴,
∵,
∴,
∵,
∴,
∵,
∴,
∴,
∴,
∵,,,且,
∴,
故答案为:.
【点睛】
题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找出相应的角的关系是解题关键.
十三、填空题
13.64
【分析】
如图,根据两直线平行,同旁内角互补求出∠3,再根据翻折变换的性质列式计算即可得解.
【详解】
解:∵长方形的对边互相平行,
∴∠3=180°﹣∠1=180°﹣128°=52°,
由翻
解析:64
【分析】
如图,根据两直线平行,同旁内角互补求出∠3,再根据翻折变换的性质列式计算即可得解.
【详解】
解:∵长方形的对边互相平行,
∴∠3=180°﹣∠1=180°﹣128°=52°,
由翻折的性质得,∠2(180°﹣∠3)(180°﹣52°)=64°.
故答案为:64.
【点睛】
本题考查了平行线的性质,翻折变换的性质,熟记各性质是解题的关键.
十四、填空题
14.8
【解析】
解:当a>b时,a☆b= =a,a最大为8;
当a<b时,a☆b==b,b最大为8,故答案为:8.
点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
解析:8
【解析】
解:当a>b时,a☆b= =a,a最大为8;
当a<b时,a☆b==b,b最大为8,故答案为:8.
点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
十五、填空题
15.(0,4)或(0,-4).
【分析】
设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.
【详解】
解:设△ABC边AB上的高为h,
∵A(1,0),
解析:(0,4)或(0,-4).
【分析】
设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.
【详解】
解:设△ABC边AB上的高为h,
∵A(1,0),B(2,0),
∴AB=2-1=1,
∴△ABC的面积=×1•h=2,
解得h=4,
点C在y轴正半轴时,点C为(0,4),
点C在y轴负半轴时,点C为(0,-4),
所以,点C的坐标为(0,4)或(0,-4).
故答案为:(0,4)或(0,-4).
【点睛】
本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键.
十六、填空题
16.【分析】
由图形得出点的横坐标依次是0、1、2、3、4、、,纵坐标依次是0、2、0、、0、2、0、、,四个一循环,继而求得答案.
【详解】
解:观察图形可知,
点的横坐标依次是0、1、2、3、4、
解析:
【分析】
由图形得出点的横坐标依次是0、1、2、3、4、、,纵坐标依次是0、2、0、、0、2、0、、,四个一循环,继而求得答案.
【详解】
解:观察图形可知,
点的横坐标依次是0、1、2、3、4、、,纵坐标依次是0、2、0、、0、2、0、、,四个一循环,
,
故点坐标是.
故答案是:.
【点睛】
本题考查了规律型:点的坐标,学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律.
十七、解答题
17.(1);(2).
【分析】
(1)先求算术平方根,再计算乘法,后加减即可得到答案;
(2)先求立方根,算术平方根,再计算加减即可得到答案.
【详解】
解:(1)
(2)
【点睛】
解析:(1);(2).
【分析】
(1)先求算术平方根,再计算乘法,后加减即可得到答案;
(2)先求立方根,算术平方根,再计算加减即可得到答案.
【详解】
解:(1)
(2)
【点睛】
本题考查的是实数的加减运算,考查了求一个数的算术平方根,立方根,掌握以上知识是解题的关键.
十八、解答题
18.(1)21;(2)17
【分析】
(1)根据完全平方公式变形,得到a2+b2=(a+b)2﹣2ab,即可求解;
(1)根据完全平方公式变形,得到(a﹣b)2=a2+b2-2ab,即可求解.
【详解】
解析:(1)21;(2)17
【分析】
(1)根据完全平方公式变形,得到a2+b2=(a+b)2﹣2ab,即可求解;
(1)根据完全平方公式变形,得到(a﹣b)2=a2+b2-2ab,即可求解.
【详解】
解:(1)∵a+b=5,ab=2,
∴a2+b2=(a+b)2﹣2ab=52﹣2×2=21;
(2))∵a+b=5,ab=2,
∴(a﹣b)2=a2+b2-2ab=21-2×2=17.
【点睛】
本题主要考查了完全平方公式,熟练掌握 及其变形公式是解题的关键.
十九、解答题
19.已知;垂直定义;;2;角平分线定义;等角的余角相等;;两直线平行,内错角相等
【分析】
根据题意和图形可以将题目中的证明过程补充完整,从而可以解答本题.
【详解】
证明:∵AB⊥AC(已知),
∴∠
解析:已知;垂直定义;;2;角平分线定义;等角的余角相等;;两直线平行,内错角相等
【分析】
根据题意和图形可以将题目中的证明过程补充完整,从而可以解答本题.
【详解】
证明:∵AB⊥AC(已知),
∴∠BAC=90°(垂直的定义),
∴∠2+∠3=90°,
∵∠1+∠4+∠BAC=180°(平角定义),
∴∠1+∠4=180°-∠BAC=90°,
∵AC平分∠DAF(已知),
∴∠1=∠2(角平分线的定义),
∴∠3=∠4(等角的余角相等),
∵a∥b(已知),
∴∠4=∠5(两直线平行,内错角相等),
∴∠3=∠5(等量代换).
故答案为:已知;垂直定义;90;2;角平分线定义;等角的余角相等;5;两直线平行,内错角相等.
【点睛】
本题考查了垂直的定义、角平分线的定义、平行线的性质和余角的定义,解题的关键是要找准线和对应的角,不能弄混淆.
二十、解答题
20.(1)作图见解析,A′(4,0);(2)(m+5,n-4);(3)3.5.
【分析】
(1)首先确定A、B、C三点平移后的位置,再连接即可;
(2)利用平移的性质得出P(m,n)的对应点P′的坐标即
解析:(1)作图见解析,A′(4,0);(2)(m+5,n-4);(3)3.5.
【分析】
(1)首先确定A、B、C三点平移后的位置,再连接即可;
(2)利用平移的性质得出P(m,n)的对应点P′的坐标即可;
(3)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案.
【详解】
解:(1)如图所示:△A′B′C′即为所求:
A′(4,0);
(2)∵△ABC先向右平移5个单位长度,再向下平移4个单位长度,得到△A′B′C′,
∴P(m,n)的对应点P′的坐标为(m+5,n-4);
(3)△ABC的面积=3×3−×2×1−×3×1−×3×2=3.5.
【点睛】
本题主要考查了坐标与图形的变化-平移,三角形面积求法以及坐标系内图形平移,正确得出对应点位置是解题关键.
二十一、解答题
21.(1)4 ,;(2)x=0或-2.
【分析】
(1)根据夹逼法可求的整数部分和小数部分;
(2)首先估算出m,n的值,进而得出m+n的值,可求满足条件的x的值.
【详解】
(1)∵4<<5,
∴的整
解析:(1)4 ,;(2)x=0或-2.
【分析】
(1)根据夹逼法可求的整数部分和小数部分;
(2)首先估算出m,n的值,进而得出m+n的值,可求满足条件的x的值.
【详解】
(1)∵4<<5,
∴的整数部分是4,小数部分是−4.
故答案为:4;;
(2)∵5﹣小数部分是m,0<5﹣<1,6+小数部分是n
∴m=5-, n=6+-10=-4
∴m+n=1
∴(x+1)2=1
x+1=±1
解得:x=0或-2.
【点睛】
此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键.
二十二、解答题
22.不同意,理由见解析.
【详解】
试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于
解析:不同意,理由见解析.
【详解】
试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于>20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2.
试题解析:解:不同意李明的说法.设长方形纸片的长为3x (x>0)cm,则宽为2x cm,依题意得:3x•2x=300,6x2=300,x2=50,∵x>0,∴x==,∴长方形纸片的长为 cm,∵50>49,∴>7,∴>21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,∴长方形纸片的长大于正方形纸片的边长.
答:李明不能用这块纸片裁出符合要求的长方形纸片.
点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小.
二十三、解答题
23.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=.
【分析】
(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=
解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=.
【分析】
(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证;
(2)结论:∠APB=∠DAP+∠FBP.
(3)①根据(2)的规律和角平分线定义解答; ②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解.
【详解】
(1)证明:过P作PM∥CD,
∴∠APM=∠DAP.(两直线平行,内错角相等),
∵CD∥EF(已知),
∴PM∥CD(平行于同一条直线的两条直线互相平行),
∴∠MPB=∠FBP.(两直线平行,内错角相等),
∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质) 即∠APB=∠DAP+∠FBP=40°+70°=110°.
(2)结论:∠APB=∠DAP+∠FBP.
理由:见(1)中证明.
(3)①结论:∠P=2∠P1;
理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,
∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,
∴∠P=2∠P1.
②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,
∵AP2、BP2分别平分∠CAP、∠EBP,
∴∠CAP2=∠CAP,∠EBP2=∠EBP,
∴∠AP2B=∠CAP+∠EBP,
= (180°-∠DAP)+ (180°-∠FBP),
=180°- (∠DAP+∠FBP),
=180°- ∠APB,
=180°- β.
【点睛】
本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线.
二十四、解答题
24.(1);(2)不变化,,理由见解析;(3)
【分析】
(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案;
(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解
解析:(1);(2)不变化,,理由见解析;(3)
【分析】
(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案;
(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解;
(3)根据平行线的性质,得;结合,推导得;再结合(1)的结论计算,即可得到答案.
【详解】
(1)∵BC,BD分别评分和,
∴,
∴
又∵,
∴
∵,
∴
∴;
(2)∵,
∴,
又∵BD平分
∴,
∴;
∴与之间的数量关系保持不变;
(3)∵,
∴
又∵,
∴,
∵
∴
由(1)可得,
∴.
【点睛】
本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解.
二十五、解答题
25.(1)50°;(2)①见解析;②见解析;(3)360°.
【分析】
(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;
(2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′
解析:(1)50°;(2)①见解析;②见解析;(3)360°.
【分析】
(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;
(2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,由两个平角∠AEB和∠ADC得:∠1+∠2等于360°与四个折叠角的差,化简得结果;
②利用两次外角定理得出结论;
(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.
【详解】
解:(1)∵,,
∴∠A′=∠A=180°-(65°+70°)=45°,
∴∠A′ED+∠A′DE =180°-∠A′=135°,
∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°;
(2)①,理由如下
由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,
∵∠AEB+∠ADC=360°,
∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED,
∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A;
②,理由如下:
∵是的一个外角
∴.
∵是的一个外角
∴
又∵
∴
(3)如图
由题意知,
∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')
又∵∠B=∠B',∠C=∠C',∠A=∠A',
∠A+∠B+∠C=180°,
∴∠1+∠2+∠3+∠4+∠5+∠6=360°.
【点睛】
题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.
展开阅读全文