1、人教版中学七7年级下册数学期末复习题(附答案)一、选择题1如图所示,下列四个选项中不正确的是( )A与是同旁内角B与是内错角C与是对顶角D与是邻补角2下列哪些图形是通过平移可以得到的()ABCD3在平面直角坐标系中,点所在的象限是( )A第一象限B第二象限C第三象限D第四象限4下列四个命题:是64的立方根;5是25的算术平方根;如果两条直线都与第三条直线平行,那么这两条直线也互相平行;在平面直角坐标系中,与两坐标轴距离都是2的点有且只有2个其中真命题有( )个A1B2C3D45如图,已知平分,平分,下列结论正确的有( );若,则A1个B2个C3个D4个6下列等式正确的是()ABCD7如图,直线
2、,E为上一点,G为上一点,垂足为F,若,则的度数为( )ABCD8如图,在平面直角坐标系内原点O(0,0)第一次跳动到点A1(0,1),第二次从点A1跳动到点A2(1,2),第三次从点A2跳动到点A3(-1,3),第四次从点A3跳动到点A4(-1,4),按此规律下去,则点A2021的坐标是( )A(673,2021)B(674,2021)C(-673,2021)D(-674,2021)九、填空题9算术平方根等于本身的实数是_.十、填空题10在平面直角坐标系中,点与点关于轴对称,则的值是_十一、填空题11如图,在中,作的角平分线与的外角的角平分线交于点;的角平分线与角平分线交于,如此下去,则_十
3、二、填空题12如图,点M为CD上一点,MF平分CME若157,则EMD的大小为_度十三、填空题13如图,把一张长方形纸片沿折叠后,、分别落在,的位置上,与交于点,若,则_十四、填空题14对于正数x规定,例如:,则f (2020)f (2019)f (2)f (1)_十五、填空题15若点P(2-m,m+1)在x轴上,则P点坐标为_十六、填空题16在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放点从原点出发,以每秒1个单位长度的速度沿着等边三角形的边“”的路线运动,设第秒运动到点(为正整数),则点的坐标是_十七、解答题17计算:(1)|+2;(2)十八、解答题18求下列
4、各式中实数的x值(1)25x2360(2)|x+2|十九、解答题19完成下面的证明:已知:如图, , 和相交于点, 平分,和相交于点,求证:证明:(已知),(_),_(两直线平行,同位角相等)又(已知),_(_)(等量代换) 平分(已知) ,_(角平分线的定义)(_)二十、解答题20在如图的方格中,每个小方格都是边长为1个单位长度的正方形,三角形ABC的三个顶点都在格点(小方格的顶点)上,(1)请建立适当的平面直角坐标系,使点A,C的坐标分别为(2,1),(1,1),并写出点B的坐标;(2)在(1)的条件下,将三角形ABC先向右平移4个单位长度,再向上平移2个单位长度后可得到三角形ABC,请在
5、图中画出平移后的三角形ABC,并分别写出点A,B,C的坐标二十一、解答题21阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分请解答:(1)若的整数部分为,小数部分为,求的值(2)已知:,其中是整数,且,求的值二十二、解答题22有一块正方形钢板,面积为16平方米(1)求正方形钢板的边长(2)李师傅准备用它裁剪出一块面积为12平方米的长方形工件,且要求长宽之比为,问李师傅能办到吗?若能,求出长方形的长
6、和宽;若不能,请说明理由(参考数据:,)二十三、解答题23如图1,已知直线mn,AB 是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即OPA=QPB(1)如图1,若OPQ=82,求OPA的度数;(2)如图2,若AOP=43,BQP=49,求OPA的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为 OPQROP试判断OPQ和ORQ的数量关系
7、,并说明理由二十四、解答题24问题情境(1)如图1,已知,求的度数佩佩同学的思路:过点作,进而,由平行线的性质来求,求得_问题迁移(2)图2图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,与相交于点,有一动点在边上运动,连接,记,如图2,当点在,两点之间运动时,请直接写出与,之间的数量关系;如图3,当点在,两点之间运动时,与,之间有何数量关系?请判断并说明理由;拓展延伸(3)当点在,两点之间运动时,若,的角平分线,相交于点,请直接写出与,之间的数量关系二十五、解答题25如图,已知直线ab,ABC100,BD平分ABC交直线a于点D,线段EF在线段AB的左侧,线段EF
8、沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P问1的度数与EPB的度数又怎样的关系?(特殊化)(1)当140,交点P在直线a、直线b之间,求EPB的度数;(2)当170,求EPB的度数;(一般化)(3)当1n,求EPB的度数(直接用含n的代数式表示)【参考答案】一、选择题1B解析:B【分析】根据同旁内角,内错角,对顶角,邻补角的定义逐项分析【详解】A. 与是同旁内角,故该选项正确,不符合题意; B. 与不是内错角,故该选项不正确,符合题意;C. 与是对顶角,故该选项正确,不符合题意; D. 与是邻补角,故该选项正确,不符合题意;故选B【点睛】本题考查了同旁内角,内错
9、角,对顶角,邻补角的定义,理解定义是解题的关键两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的两侧,那么这两个角叫做内错角两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的同旁,那么这两个角叫做同旁内角两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角2B【分析】根据平移、旋转、轴对称的定义逐项判断即可【详解】A、通过旋转得到,故本选项错误B、通过平移得到,故本选项正确C、通过轴对称得到,故本选项错误D、通过旋转得到,
10、故本选项错误解析:B【分析】根据平移、旋转、轴对称的定义逐项判断即可【详解】A、通过旋转得到,故本选项错误B、通过平移得到,故本选项正确C、通过轴对称得到,故本选项错误D、通过旋转得到,故本选项错误故选:B【点睛】本题考查了平移、旋转、轴对称的定义,熟记定义是解题关键3B【分析】根据点的横纵坐标的符号可得所在象限【详解】解:点P的横坐标是负数,纵坐标是正数,点P(-3,1)在第二象限,故选:B【点睛】本题主要考查点的坐标,熟练掌握各象限内点的坐标的特点是解本题的关键,第一、二、三、四象限内的点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-)4B【分析】根据立方根和算术平方根的定义
11、、平行线的性质、点到直线的距离逐项判断即可【详解】64的立方根是4,故是假命题; 25的算数平方根是5,故是真命题;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故是真命题;与两坐标轴距离都是2的点有(2,2)、(2,-2)、(-2,2)、(-2,-2)共4点,故是假命题故选:B【点睛】本题考查命题真、假的判断正确掌握相关定义、性质与判定是解题关键5C【分析】由三个已知条件可得ABCD,从而正确;由及平行线的性质则可推得正确;由条件无法推出ACBD,可知错误;由及平分,可得ACP=E,得ACBD,从而由平行线的性质易得,即正确【详解】平分,平分ACD=2ACP=22,CAB=21=
12、2CAP ACD+CAB=2(1+2)=290=180故正确ABE=CDBCDB+CDF=180故正确由已知条件无法推出ACBD故错误,ACD=2ACP=22ACP=EACBDCAP=FCAB=21=2CAP故正确故正确的序号为故选:C【点睛】本题考查了平行线的判定与性质,角平分线的定义,掌握这些知识是关键6C【分析】根据算术平方根、立方根的定义计算即可【详解】A、负数没有平方根,故错误B、表示计算算术平方根,所以,故错误C、,故正确D、,故错误故选:C【点睛】本题考查算术平方根、立方根的计算,熟知任何数都有立方根、负数没有平方根是关键7C【分析】根据内角和定理可知的度数,再根据平行线的性质即
13、可求得的度数【详解】故选:C【点睛】本题主要考查了三角形内角和定理及平行线的性质,熟练掌握相关角度计算方法是解决本题的关键8B【分析】根据已知点的坐标寻找规律并应用解答即可【详解】解:A1(0,1),A2(1,2),A3(-1,3),A4(-1,4),A5(2,5),A6(-2,6),A7(-2,7),A解析:B【分析】根据已知点的坐标寻找规律并应用解答即可【详解】解:A1(0,1),A2(1,2),A3(-1,3),A4(-1,4),A5(2,5),A6(-2,6),A7(-2,7),A8(3,8),A3n-1(n,3n-1),A3n(-n,3n),A3n+1(-n,3n+1)(n为正整数)
14、,3674-1=2021,n=674,所以A 2021(674,2021)故选B【点睛】本题主要考查了点的坐标规律,根据已知点坐标找到A3n-1(n,3n-1),A3n(-n,3n),A3n+1(-n,3n+1)(n为正整数)的规律是解答本题的关键九、填空题90或1【详解】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知解析:0或1【详解】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案解:1和0的算术平方根等于本身.故答案为
15、1和0“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身十、填空题104【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.【详解】点与点关于轴对称,则a+b的值是:,故答案为【点睛】本题考查了关于x轴对称的解析:4【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.【详解】点与点关于轴对称,则a+b的值是:,故答案为【点睛】本题考查了关于x轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.十一、填空题11【分析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与
16、,与的关系,找出规律即可【详解】解:设BC延长与点D,的角平分线与的外角的角平分线交于点,同解析:【分析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与,与的关系,找出规律即可【详解】解:设BC延长与点D,的角平分线与的外角的角平分线交于点,同理可得,故答案为:【点睛】本题主要考查三角形外角的性质,角平分线的定义,三角形内角和等知识点,熟知以上知识点,找出角度之间的规律是解题的关键十二、填空题12【分析】根据ABCD,求得CMF=157,利用MF平分CME,求得CME=2CMF114,根据EMD=180-CME求出结果.【详解】ABCD,CMF=解析:【分析】根据ABCD,求得
17、CMF=157,利用MF平分CME,求得CME=2CMF114,根据EMD=180-CME求出结果.【详解】ABCD,CMF=157,MF平分CME,CME=2CMF114,EMD=180-CME66,故答案为:66.【点睛】此题考查平行线的性质,角平分线的有关计算,理解图形中角之间的和差关系是解题的关键.十三、填空题1368【分析】先根据平行线的性质求得DEF的度数,再根据折叠求得DEG的度数,最后计算AEG的大小【详解】解:AD/BC,DEF=EFG=56,由折叠可得,GEF解析:68【分析】先根据平行线的性质求得DEF的度数,再根据折叠求得DEG的度数,最后计算AEG的大小【详解】解:A
18、D/BC,DEF=EFG=56,由折叠可得,GEF=DEF=56,DEG=112,AEG=180-112=68故答案为:68【点睛】本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等十四、填空题145【分析】由已知可求,则可求【详解】解:,故答案为:2019.5【点睛】本题考查代数值求值,根据所给条件,探索出是解题的关键解析:5【分析】由已知可求,则可求【详解】解:,故答案为:2019.5【点睛】本题考查代数值求值,根据所给条件,探索出是解题的关键十五、填空题15(3,0)【分析】根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标【详解】点P(2
19、-m,m+1)在x轴上,m+1=0,解得:m=-1,2-m=3,P点坐标解析:(3,0)【分析】根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标【详解】点P(2-m,m+1)在x轴上,m+1=0,解得:m=-1,2-m=3,P点坐标为(3,0),故答案为:(3,0)【点睛】本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键十六、填空题16【分析】通过观察可得,An每6个点的纵坐标规律:,0,0,-,0,点An的横坐标规律:1,2,3,4,5,6,n,点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“”的路线运动,1解析:【分析】通过观察可得,An每6个点的纵坐
20、标规律:,0,0,-,0,点An的横坐标规律:1,2,3,4,5,6,n,点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“”的路线运动,1秒钟走一段,P运动每6秒循环一次,点P运动n秒的横坐标规律: ,1,2,3,点P的纵坐标规律:,0,0,0,0,确定P2021循环余下的点即可【详解】解:图中是边长为1个单位长度的等边三角形, A2(1,0)A4(2,0)A6(3,0)An中每6个点的纵坐标规律:,0,0,0, 点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“”的路线运动,1秒钟走一段,P运动每6秒循环一次点P的纵坐标规律:,0,0,-,0,点P的横坐标规律: ,1,2,3,
21、20213366+5,点P2021的纵坐标为,点P2021的横坐标为,点P2021的坐标,故答案为:【点睛】本题考查点的规律,平面直角坐标系中点的特点及等边三角形的性质,确定点的坐标规律是解题的关键十七、解答题17(1)(2)3【分析】(1)根据二次根式的运算法即可求解;(2)根据实数的性质化简,故可求解【详解】(1)|+2=(2)=3【点睛】此题主要考查实数与二次根式的运算解析:(1)(2)3【分析】(1)根据二次根式的运算法即可求解;(2)根据实数的性质化简,故可求解【详解】(1)|+2=(2)=3【点睛】此题主要考查实数与二次根式的运算,解题的关键是熟知其运算法则十八、解答题18(1)x
22、;(2)x2或x2+【分析】(1)先移项,再将两边都除以25,再开平方即可求解;(2)根据绝对值的性质即可求解【详解】解:(1)25x2360,25x2解析:(1)x;(2)x2或x2+【分析】(1)先移项,再将两边都除以25,再开平方即可求解;(2)根据绝对值的性质即可求解【详解】解:(1)25x2360,25x236,x2,x;(2)|x+2|,x+2,x2或x2+【点睛】本题主要考查了绝对值及平方根,注意一个正数的平方根有两个,它们互为相反数十九、解答题19内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换【分析】由可判定,即得出,再根据得出,等量代换得到,再根据角平分
23、线的定义等量代换即可得解【详解】证明:(已知),(内解析:内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换【分析】由可判定,即得出,再根据得出,等量代换得到,再根据角平分线的定义等量代换即可得解【详解】证明:(已知),(内错角相等,两直线平行),(两直线平行,同位角相等)又(已知),(两直线平行,同位角相等),(等量代换)平分(已知),(角平分线的定义)(等量代换)故答案为:内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换【点睛】本题考查了平行线的判定与性质,解题的关键是熟记“内错角相等,两直线平行”、“两直线平行,同位角相等”二十、解答题20(1)坐标
24、系见解析,B(0,1);(2)画图见解析,A(2,1),B(4,3),C(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可(解析:(1)坐标系见解析,B(0,1);(2)画图见解析,A(2,1),B(4,3),C(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可(2)分别作出A,B,C即可解决问题【详解】解:(1)平面直角坐标系如图所示:B(0,1)(2)ABC如图所示A(2,1),B(4,3),C(5,1)【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于
25、中考常考题型二十一、解答题21(1)6;(2)12【分析】(1)先求出的取值范围即可求出a和b的值,然后代入求值即可;(2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论【详解】解析:(1)6;(2)12【分析】(1)先求出的取值范围即可求出a和b的值,然后代入求值即可;(2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论【详解】解:(1) 34, a=3,b=-3 =+-3-=6(2) 12又10+=x+y,其中x是整数,且0y1,x=11, y=1xy=11(1)=12【点睛】此题考查的是求无理数的整数部分、小数部分和
26、实数的运算,掌握求无理数的取值范围是解决此题的关键二十二、解答题22(1)4米 (2)见解析【分析】(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解解析:(1)4米 (2)见解析【分析】(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解:(1)正方形的面积是16平方米,正方形钢板的边长是米;(2)设长方形的长宽分别为米、米,则,长方形长是米,而正方形的边长为4米,所以李师傅不能办到.【点睛】
27、本题考查了算术平方根的实际应用,灵活的利用算术平方根表示正方形和长方形的边长是解题的关键.二十三、解答题23(1)49,(2)44,(3)OPQ=ORQ【分析】(1)根据OPA=QPB可求出OPA的度数;(2)由AOP=43,BQP=49可求出OPQ的度数,转化为(1)来解解析:(1)49,(2)44,(3)OPQ=ORQ【分析】(1)根据OPA=QPB可求出OPA的度数;(2)由AOP=43,BQP=49可求出OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:OPQ=AOP+BQP,ORQ=DOR+RQC,从而OPQ=ORQ【详解】解:(1)OPA=QPB,OPQ=82,OPA=
28、(180-OPQ)=(180-82)=49,(2)作PCm,mn,mPCn,AOP=OPC=43,BQP=QPC=49,OPQ=OPC+QPC=43+49=92,OPA=(180-OPQ)=(180-92)44,(3)OPQ=ORQ理由如下:由(2)可知:OPQ=AOP+BQP,ORQ=DOR+RQC,入射光线与平面镜的夹角等于反射光线与平面镜的夹角,AOP=DOR,BQP=RQC,OPQ=ORQ【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的二十四、解答题24(1);(2),理由见解析;(3)【分析】(1)过点作,则,由平
29、行线的性质可得的度数;(2)过点作的平行线,依据平行线的性质可得与,之间的数量关系;过作,依据平行线的性质可得,即解析:(1);(2),理由见解析;(3)【分析】(1)过点作,则,由平行线的性质可得的度数;(2)过点作的平行线,依据平行线的性质可得与,之间的数量关系;过作,依据平行线的性质可得,即可得到;(3)过和分别作的平行线,依据平行线的性质以及角平分线的定义,即可得到与,之间的数量关系为【详解】解:(1)如图1,过点作,则,由平行线的性质可得,又,故答案为:;(2)如图2,与,之间的数量关系为;过点P作PMFD,则PMFDCG,PMFD,1=,PMCG,2=,1+2=+,即:,如图,与,
30、之间的数量关系为;理由:过作,;(3)如图,由可知,N=3+4,EN平分DEP,AN平分PAC,3=,4=,与,之间的数量关系为【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论二十五、解答题25(1)EPB170;(2)当交点P在直线b的下方时:EPB20,当交点P在直线a,b之间时:EPB160,当交点P在直线a的上方时:EPB15020;(3)当解析:(1)EPB170;(2)当交点P在直线b的下方时:EPB20,当交点P在直线a,b之间时:EPB160,当交点P在直线a的上方时:EPB15020;(3)当交点P在直线a,b之间时:EPB180|
31、n50|;当交点P在直线a上方或直线b下方时:EPB|n50|.【分析】(1)利用外角和角平分线的性质直接可求解;(2)分三种情况讨论:当交点P在直线b的下方时;当交点P在直线a,b之间时;当交点P在直线a的上方时;分别画出图形求解;(3)结合(2)的探究,分两种情况得到结论:当交点P在直线a,b之间时;当交点P在直线a上方或直线b下方时;【详解】解:(1)BD平分ABC,ABDDBCABC50,EPB是PFB的外角,EPBPFB+PBF1+(18050)170;(2)当交点P在直线b的下方时:EPB15020;当交点P在直线a,b之间时:EPB50+(1801)160;当交点P在直线a的上方时:EPB15020;(3)当交点P在直线a,b之间时:EPB180|n50|;当交点P在直线a上方或直线b下方时:EPB|n50|;【点睛】考查知识点:平行线的性质;三角形外角性质根据动点P的位置,分类画图,结合图形求解是解决本题的关键数形结合思想的运用是解题的突破口