资源描述
人教版中学七7年级下册数学期末测试附答案
一、选择题
1.下列计算正确的是()
A. B. C.|﹣3|=﹣3 D.﹣32=9
2.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( )
A. B. C. D.
3.在平面直角坐标系中,下列各点在第二象限的是( )
A. B. C. D.
4.下列命题中,假命题是( )
A.对顶角相等
B.两直线平行,内错角相等
C.在同一平面内,垂直于同一直线的两直线平行
D.过一点有且只有一条直线与已知直线平行
5.如图,,P为平行线之间的一点,若,CP平分∠ACD,,则∠BAP的度数为( )
A. B. C. D.
6.若a2=16,=2,则a+b的值为( )
A.12 B.4 C.12或﹣4 D.12或4
7.如图,将一块三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为( )
A.55° B.45° C.40° D.35°
8.如图,将边长为1的正方形沿轴正方向连续翻转2020次,点依次落在点、、、…的位置上,则点的坐标为( ).
A. B. C. D.
九、填空题
9.的算术平方根是 _____.
十、填空题
10.点(3,0)关于y轴对称的点的坐标是_______
十一、填空题
11.如图.已知点为两条相互平行的直线之间一动点,和的角平分线相交于,若,则的度数为________.
十二、填空题
12.如图,,设,那么,,的关系式______.
十三、填空题
13.如图1是的一张纸条,按图1→图2→图3,把这一纸条先沿折叠并压平,再沿折叠并压平,若图2中,则图3中的度数为_______.
十四、填空题
14.对于有理数a,b,规定一种新运算:a※b=ab+b,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a※b=b※a,则a=b;③方程(x﹣4)※3=6的解为x=5;④(a※b)※c=a※(b※c).其中正确的是_____(把所有正确的序号都填上).
十五、填空题
15.如图,已知,,第四象限的点到轴的距离为3,若,满足,则与轴的交点坐标为__________.
十六、填空题
16.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点出发,按图中箭头所示的方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,第4次接着运动到点,第5次接着运动到点,第6次接着运动到点.…按这样的运动规律,经过2021次运动后,电子蚂蚁运动到的位置的坐标是_________.
十七、解答题
17.(1)计算:
(2)解方程:
十八、解答题
18.求下列各式中x的值:
(1)
(2)
十九、解答题
19.如图,已知,,,求证:平分.
证明:, (已知)
(垂直的定义)
( )
( )
(两直线平行,同位角相等)
又(已知)
( )
平分(角平分线的定义)
二十、解答题
20.如图,的顶点坐标分别为:,,,将平移得到,使点的对应点为.
(1)可以看作是由先向左平移 个单位,再向下平移 个单位得到的;
(2)在图中作出,并写出点、的对应点、的坐标;
(3)求的面积.
二十一、解答题
21.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而<2,于是可用来表示的小数部分.请解答下列问题:
(1)的整数部分是_______,小数部分是_________;
(2)如果的小数部分为的整数部分为求的值.
二十二、解答题
22.如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.
(1)拼成的正方形的面积与边长分别是多少?
(2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是多少?点A表示的数的相反数是多少?
(3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并求它的边长
二十三、解答题
23.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.
(1)根据图1填空:∠1= °,∠2= °;
(2)现把三角板绕B点逆时针旋转n°.
①如图2,当n=25°,且点C恰好落在DG边上时,求∠1、∠2的度数;
②当0°<n<180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由.
二十四、解答题
24.如图,直线,一副三角板(,,)按如图①放置,其中点在直线上,点均在直线上,且平分.
(1)求的度数.
(2)如图②,若将三角形绕点以每秒的速度按逆时针方向旋转(的对应点分别为).设旋转时间为秒.
①在旋转过程中,若边,求的值;
②若在三角形绕点旋转的同时,三角形绕点以每秒的速度按顺时针方向旋转(的对应点分别为).请直接写出当边时的值.
二十五、解答题
25.(1)如图1,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度数;
(2)如图2,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α°,∠ABC=β°,求∠AEC的度数;
(3)如图3,PQ⊥MN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分∠BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由.
【参考答案】
一、选择题
1.B
解析:B
【分析】
依据算术平方根、平方根的定义以及绝对值和有理数的乘方法则求解即可.
【详解】
解:A、,故A错误;
B、,故B正确;
C、|-3|=3,故C错误;
D、-32=-9,故D错误.
故选:B.
【点睛】
本题主要考查的是算术平方根的性质以及有理数的乘方,掌握相关知识是解题的关键.
2.D
【分析】
根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.
【详解】
解:A、不能用平移变换来分析其形成过程,故此选项错误;
B、不能用平移变换来分析其
解析:D
【分析】
根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.
【详解】
解:A、不能用平移变换来分析其形成过程,故此选项错误;
B、不能用平移变换来分析其形成过程,故此选项错误;
C、不能用平移变换来分析其形成过程,故此选项正确;
D、能用平移变换来分析其形成过程,故此选项错误;
故选:D.
【点睛】
本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.
3.D
【分析】
根据在第二象限的点的特征进行判断,即可得到答案.
【详解】
解:∵第二象限的点特征是横坐标小于零,纵坐标大于零,
∴点(-3,7)在第二象限,
故选D.
【点睛】
本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.D
【分析】
根据对顶角的定义、平行线的性质、平行公理及其推论可直接进行排除选项.
【详解】
解:A、对顶角相等,是真命题,故不符合题意;
B、两直线平行,内错角相等,是真命题,故不符合题意;
C、在同一平面内,垂直于同一直线的两直线平行,是真命题,故不符合题意;
D、过直线外一点有且只有一条直线与已知直线平行,所以原命题是假命题,故符合题意;
故选D.
【点睛】
本题主要考查命题、平行线的性质、平行公理及对顶角的定义,熟练掌握命题、平行线的性质、平行公理及对顶角的定义等相关知识点是解题的关键.
5.A
【分析】
过P点作PMAB交AC于点M,直接利用平行线的性质以及平行公理分别分析即可得出答案.
【详解】
解:如图,过P点作PMAB交AC于点M.
∵CP平分∠ACD,∠ACD=68°,
∴∠4=∠ACD=34°.
∵ABCD,PMAB,
∴PMCD,
∴∠3=∠4=34°,
∵AP⊥CP,
∴∠APC=90°,
∴∠2=∠APC-∠3=56°,
∵PMAB,
∴∠1=∠2=56°,
即:∠BAP的度数为56°,
故选:A.
【点睛】
此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键.
6.D
【分析】
根据平方根和立方根的意义求出a、b即可.
【详解】
解:∵a2=16,
∴a=±4,
∵=2,
∴b=8,
∴a+b=4+8或﹣4+8,
即a+b=12或4.
故选:D.
【点睛】
本题考查了平方根和立方根以及有理数加法,解题关键是明确平方根和立方根的意义,准确求出a、b的值,注意:一个正数的平方根有两个.
7.D
【分析】
先根据平行线的性质得到∠3=55°,再结合平角的定义即可得到结论.
【详解】
解:如图,∵ABCD,
∴∠1=∠3=55°,
∵∠2+90°+∠3=180°,
∴∠2=35°,
故选:D.
【点睛】
本题考查了平行线的性质,平角的定义,熟记平行线的性质是解题的关键.
8.D
【分析】
探究规律,利用规律即可解决问题.
【详解】
解:由题意,,,,,,,,,
每4个一循环,
则2021个纵坐标等于1轴,坐标应该是,
故选:D.
【点睛】
本题考查了点的坐标的规律变化
解析:D
【分析】
探究规律,利用规律即可解决问题.
【详解】
解:由题意,,,,,,,,,
每4个一循环,
则2021个纵坐标等于1轴,坐标应该是,
故选:D.
【点睛】
本题考查了点的坐标的规律变化,解题的关键是根据正方形的性质,判断出每翻转4次为一个循环组是解题的关键,要注意翻转一个循环组点向右前行4个单位.
九、填空题
9.2
【详解】
∵,的算术平方根是2,
∴的算术平方根是2.
【点睛】
这里需注意:的算术平方根和的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去
解析:2
【详解】
∵,的算术平方根是2,
∴的算术平方根是2.
【点睛】
这里需注意:的算术平方根和的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错.
十、填空题
10.(-3,0)
【分析】
根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.
【详解】
解:点(m,n)关于y轴对称点的坐标(-m,n),
所以点(3,0)关于y轴
解析:(-3,0)
【分析】
根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.
【详解】
解:点(m,n)关于y轴对称点的坐标(-m,n),
所以点(3,0)关于y轴对称的点的坐标为(-3,0).
故答案为:(-3,0).
【点睛】
本题考查平面直角坐标系点的对称性质:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
十一、填空题
11.120°
【分析】
由角平分线的定义可得,,又由,得,;设,,则;再根据四边形内角和定理得到,最后根据即可求解.
【详解】
解:和的角平分线相交于,
,,
又,
,,
设,,
,
在四边形中,,,,
解析:120°
【分析】
由角平分线的定义可得,,又由,得,;设,,则;再根据四边形内角和定理得到,最后根据即可求解.
【详解】
解:和的角平分线相交于,
,,
又,
,,
设,,
,
在四边形中,,,,
,
,
,
,
故答案为:.
【点睛】
本题考查了平行线的判定和性质,正确的识别图形是解题的关键.
十二、填空题
12.【分析】
过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解;
【详解】
如图,过作,过作,
∴,
∴,,,
∵,
∴,
∴,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查了平
解析:
【分析】
过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解;
【详解】
如图,过作,过作,
∴,
∴,,,
∵,
∴,
∴,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查了平行线的性质,两直线平行同位角相等,两直线平行内错角相等,正确理解平行线的性质是解题的关键;
十三、填空题
13.15°
【分析】
利用“两直线平行,同旁内角互补”可求出∠BFE,利用折叠的性质求出∠BFC的度数,再利用角的和差求出∠CFE.
【详解】
解:∵AE∥BF,
∴∠BFE=180°-∠AEF=65°
解析:15°
【分析】
利用“两直线平行,同旁内角互补”可求出∠BFE,利用折叠的性质求出∠BFC的度数,再利用角的和差求出∠CFE.
【详解】
解:∵AE∥BF,
∴∠BFE=180°-∠AEF=65°,
∵2∠BFE+∠BFC=180°,
∴∠BFC=180°-2∠BFE=50°,
∴∠CFE=∠BFE-∠BFC=15°,
故答案为:15°.
【点睛】
本题考查了平行线的性质、折叠的性质以及角的计算,通过角的计算,求出∠BFE的度数是解题的关键.
十四、填空题
14.①③
【分析】
题目中各式利用已知的新定义公式计算得到结果,即可做出判断.
【详解】
(−3)※4=−3×4+4=−8,所以①正确;
a※b=ab+b,b※a=ab+a,若 a=b ,两式相等,若
解析:①③
【分析】
题目中各式利用已知的新定义公式计算得到结果,即可做出判断.
【详解】
(−3)※4=−3×4+4=−8,所以①正确;
a※b=ab+b,b※a=ab+a,若 a=b ,两式相等,若 a≠b ,则两式不相等,所以②错误;
方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;
左边=(a※b) ※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c
右边=a※(b※c)=a※(b×c+c)=a(b×c+c) +(b×c+c)=abc+ac+bc+c2
两式不相等,所以④错误.
综上所述,正确的说法有①③.
故答案为①③.
【点睛】
有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.
十五、填空题
15.【分析】
根据二次根式的非负性、绝对值的非负性求出a,b,再求出直线BC的解析式即可得解;
【详解】
∵、都有意义,
∴,
∴,
∴,
∴,
∵第四象限的点到轴的距离为3,
∴C点的坐标为,
设直
解析:
【分析】
根据二次根式的非负性、绝对值的非负性求出a,b,再求出直线BC的解析式即可得解;
【详解】
∵、都有意义,
∴,
∴,
∴,
∴,
∵第四象限的点到轴的距离为3,
∴C点的坐标为,
设直线BC的解析式为,
把,代入得:
,
解得:,
故BC的解析式为,
当时,,
故与轴的交点坐标为;
故答案是.
【点睛】
本题主要考查了用待定系数法求一次函数解析式、绝对值的非负性、、坐标与图形的性质,准确计算是解题的关键.
十六、填空题
16.(1617,2)
【分析】
根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-
解析:(1617,2)
【分析】
根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-2,-2,0,…,每5次一轮这一规律,进而求出即可.
【详解】
解:前五次运动横坐标分别为:1,2,2,4,4,
第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4,
…
∴第5n+1到5n+5次运动横坐标分别为:4n+1,4n+2,4n+2,4n+4,4n+4,
前五次运动纵坐标分别2,0,-2,-2,0,
第6到10次运动纵坐标分别为2,0,-2,-2,0,
…
∴第5n+1到5n+5次运动纵坐标分别为2,0,-2,-2,0,
∵2021÷5=404…1,
∴经过2021次运动横坐标为=4×404+1=1617,经过2021次运动纵坐标为2,
∴经过2021次运动后,电子蚂蚁运动到的位置的坐标是(1617,2).
故答案为:(1617,2).
【点睛】
此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.
十七、解答题
17.(1);(2)x=
【分析】
(1)先算乘方、绝对值和开方,再算乘法,最后算加减;
(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.
【详解】
解:(1)
=
=
解析:(1);(2)x=
【分析】
(1)先算乘方、绝对值和开方,再算乘法,最后算加减;
(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.
【详解】
解:(1)
=
=
=;
(2),
去分母,可得:3(x+1)-6=2(2-3x),
去括号,可得:3x+3-6=4-6x,
移项,可得:3x+6x=4-3+6,
合并同类项,可得:9x=7,
系数化为1,可得:x=.
【点睛】
此题主要考查了实数的混合运算,解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.
十八、解答题
18.(1);(2)
【分析】
(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;
(2)先移项,再根据立方根的性质,即可求解.
【详解】
(1)解:∵
∴
∴
∴;
(2)解:∵
∴
∴
∴.
解析:(1);(2)
【分析】
(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;
(2)先移项,再根据立方根的性质,即可求解.
【详解】
(1)解:∵
∴
∴
∴;
(2)解:∵
∴
∴
∴.
【点睛】
本题主要考查了平方根和立方根的性质,熟练掌握相关性质是解题的关键.
十九、解答题
19.见解析
【分析】
应用平行线的判定与性质进行求解即可得出答案.
【详解】
解:证明:∵DE⊥BC,AB⊥BC(已知),
∴∠DEC=∠ABC=90°(垂直的定义).
∴DE∥AB(同位角相等,两直线
解析:见解析
【分析】
应用平行线的判定与性质进行求解即可得出答案.
【详解】
解:证明:∵DE⊥BC,AB⊥BC(已知),
∴∠DEC=∠ABC=90°(垂直的定义).
∴DE∥AB(同位角相等,两直线平行).
∴∠2=∠3(两直线平行,内错角相等),
∠1=∠A(两直线平行,同位角相等).
又∵∠A=∠3(已知),
∴∠1=∠2(等量代换).
∴DE平分∠CDB(角平分线的定义).
【点睛】
本题主要考查了平行线的判定与性质,熟练应用平行线的判定与性质进行求解是解决本题的关键.
二十、解答题
20.(1)6;6;(2)图见解析,,;(3)
【分析】
(1)根据平移的性质,由对应点的坐标即可得到平移的方式;
(2)根据平移的方式,即可画出平移后的图形.
(3)利用间接求面积的方法,即可求出三角形
解析:(1)6;6;(2)图见解析,,;(3)
【分析】
(1)根据平移的性质,由对应点的坐标即可得到平移的方式;
(2)根据平移的方式,即可画出平移后的图形.
(3)利用间接求面积的方法,即可求出三角形的面积.
【详解】
解:(1)∵平移后对应点为,
∴可以看作是由先向左平移6个单位,再向下平移6个单位得到的
故答案为:6;6;
(2)作出如图所示.
∴点、的对应点、的坐标分别为:,;
(3)将三角形补成如图所示的正方形,则其面积为:
.
【点睛】
本题考查了平移的性质,解题的关键是掌握平移的性质,正确求出平移的方式,画出平移的图形.
二十一、解答题
21.(1)5;-5(2)0
【分析】
(1)先估算出的范围,即可得出答案;
(2)先估算出、的范围,求出a、b的值,再代入求出即可.
【详解】
(1)∵5<<6,
∴的整数部分是5,小数部分是-5,
故
解析:(1)5;-5(2)0
【分析】
(1)先估算出的范围,即可得出答案;
(2)先估算出、的范围,求出a、b的值,再代入求出即可.
【详解】
(1)∵5<<6,
∴的整数部分是5,小数部分是-5,
故答案为:5;-5;
(2)∵3<<4,
∴a=-3,
∵3<<4,
∴b=3,
∴=-3+3-=0.
【点睛】
本题考查了估算无理数的大小,能估算出、、的范围是解此题的关键.
二十二、解答题
22.(1)5;;(2);;(3)能,.
【分析】
(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.
(2)求出斜边长即可.
(3)一共有10个小正
解析:(1)5;;(2);;(3)能,.
【分析】
(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.
(2)求出斜边长即可.
(3)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,画图.
【详解】
试题分析:
解:(1)拼成的正方形的面积与原面积相等1×1×5=5,
边长为,
如图(1)
(2)斜边长=,
故点A表示的数为:;点A表示的相反数为:
(3)能,如图
拼成的正方形的面积与原面积相等1×1×10=10,边长为.
考点:1.作图—应用与设计作图;2.图形的剪拼.
二十三、解答题
23.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析
【分析】
(1)根据邻补角的定义和平行线的性质解答;
(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相
解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析
【分析】
(1)根据邻补角的定义和平行线的性质解答;
(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;
②结合图形,分AB、BC、AC三条边与直尺垂直讨论求解.
【详解】
解:(1)∠1=180°-60°=120°,
∠2=90°;
故答案为:120,90;
(2)①如图2,
∵∠ABC=60°,
∴∠ABE=180°-60°-n°=120°-n°,
∵DG∥EF,
∴∠1=∠ABE=120°-n°,
∠BCG=180°-∠CBF=180°-n°,
∵∠ACB+∠BCG+∠2=360°,
∴∠2=360°-∠ACB-∠BCG
=360°-90°-(180°-n°)
=90°+n°;
②当n=30°时,∵∠ABC=60°,
∴∠ABF=30°+60°=90°,
AB⊥DG(EF);
当n=90°时,
∠C=∠CBF=90°,
∴BC⊥DG(EF),AC⊥DE(GF);
当n=120°时,
∴AB⊥DE(GF).
【点睛】
本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.
二十四、解答题
24.(1)60°;(2)①6s;②s或s
【分析】
(1)利用平行线的性质角平分线的定义即可解决问题.
(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.
②分两种情形:如图③中,当
解析:(1)60°;(2)①6s;②s或s
【分析】
(1)利用平行线的性质角平分线的定义即可解决问题.
(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.
②分两种情形:如图③中,当BG∥HK时,延长KH交MN于R.根据∠GBN=∠KRN构建方程即可解决问题.如图③-1中,当BG∥HK时,延长HK交MN于R.根据∠GBN+∠KRM=180°构建方程即可解决问题.
【详解】
解:(1)如图①中,
∵∠ACB=30°,
∴∠ACN=180°-∠ACB=150°,
∵CE平分∠ACN,
∴∠ECN=∠ACN=75°,
∵PQ∥MN,
∴∠QEC+∠ECN=180°,
∴∠QEC=180°-75°=105°,
∴∠DEQ=∠QEC-∠CED=105°-45°=60°.
(2)①如图②中,
∵BG∥CD,
∴∠GBC=∠DCN,
∵∠DCN=∠ECN-∠ECD=75°-45°=30°,
∴∠GBC=30°,
∴5t=30,
∴t=6s.
∴在旋转过程中,若边BG∥CD,t的值为6s.
②如图③中,当BG∥HK时,延长KH交MN于R.
∵BG∥KR,
∴∠GBN=∠KRN,
∵∠QEK=60°+4t,∠K=∠QEK+∠KRN,
∴∠KRN=90°-(60°+4t)=30°-4t,
∴5t=30°-4t,
∴t=s.
如图③-1中,当BG∥HK时,延长HK交MN于R.
∵BG∥KR,
∴∠GBN+∠KRM=180°,
∵∠QEK=60°+4t,∠EKR=∠PEK+∠KRM,
∴∠KRM=90°-(180°-60°-4t)=4t-30°,
∴5t+4t-30°=180°,
∴t=s.
综上所述,满足条件的t的值为s或s.
【点睛】
本题考查几何变换综合题,考查了平行线的性质,旋转变换,角平分线的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.
二十五、解答题
25.(1)∠E=45°;(2)∠E=;(3)不变化,
【分析】
(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠
解析:(1)∠E=45°;(2)∠E=;(3)不变化,
【分析】
(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,则可得∠E= (∠D+∠B),继而求得答案;
(2)首先延长BC交AD于点F,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D,又由角平分线的性质,即可求得答案.
(3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案.
【详解】
解:(1)∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,
∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,
∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB
∴∠D+∠B=2∠E,
∴∠E=(∠D+∠B),
∵∠ADC=50°,∠ABC=40°,
∴∠AEC= ×(50°+40°)=45°;
(2)延长BC交AD于点F,
∵∠BFD=∠B+∠BAD,
∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,
∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,
∵∠E+∠ECB=∠B+∠EAB,
∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD
=∠B+∠BAE-(∠B+∠BAD+∠D)
= (∠B-∠D),
∠ADC=α°,∠ABC=β°,
即∠AEC=
(3)的值不发生变化,
理由如下:
如图,记与交于,与交于,
①,
②,
①-②得:
AD平分∠BAC,
【点睛】
此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用.
展开阅读全文