收藏 分销(赏)

福建省福州市第四中学2025-2026学年数学高一第一学期期末复习检测模拟试题含解析.doc

上传人:zj****8 文档编号:12794249 上传时间:2025-12-08 格式:DOC 页数:13 大小:565.50KB 下载积分:12.58 金币
下载 相关 举报
福建省福州市第四中学2025-2026学年数学高一第一学期期末复习检测模拟试题含解析.doc_第1页
第1页 / 共13页
福建省福州市第四中学2025-2026学年数学高一第一学期期末复习检测模拟试题含解析.doc_第2页
第2页 / 共13页


点击查看更多>>
资源描述
福建省福州市第四中学2025-2026学年数学高一第一学期期末复习检测模拟试题 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.若集合,则集合() A. B. C. D. 2.设,,,则、、的大小关系是 A. B. C. D. 3.关于的方程的实数根的个数为() A.6 B.4 C.3 D.2 4.设,为正数,且,则的最小值为() A. B. C. D. 5.已知集合A={1,2,3},B={x∈N|x≤2},则A∪B=( ) A.{2,3} B.{0,1,2,3} C.{1,2} D.{1,2,3} 6.全集,集合,则() A. B. C. D. 7.将函数的周期扩大到原来的2倍,再将函数图象左移,得到图象对应解析式是( ) A. B. C. D. 8.已知,且,对任意的实数,函数不可能 A.是奇函数 B.是偶函数 C.既是奇函数又是偶函数 D.既不是奇函数又不是偶函数 9.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m⊥α,n∥α,则m⊥n ②若α⊥γ,β⊥γ,则α∥β ③若α⊥β,m⊂α,则m⊥β ④若α∥β,β∥γ,m⊥α,则m⊥γ 其中正确命题的序号是(  ) A.和 B.和 C.和 D.和 10.已知函数,若存在四个互不相等的实数根,则实数的取值范围为( ) A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.设当时,函数取得最大值,则__________. 12.已知定义在R上的函数满足,且当时,,若对任都有,则m的取值范围是_________ 13.已知角A为的内角,,则______ 14.已知函数,其所有的零点依次记为,则_________. 15.已知,则的大小关系是___________________.(用“”连结) 16.如图,在中, ,以为圆心、为半径作圆弧交于点.若圆弧等分的面积,且弧度,则=________. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知. (1)化简; (2)若,求. 18.2020 年初至今,新冠肺炎疫情袭击全球,对人民生命安全和生产生活造成严重影响.在党和政府强有力抗疫领导下,我国控制住疫情后,一方面防止境外疫情输入,另一方面逐步复工复产,减轻经济下降对企业和民众带来的损失.为降低疫情影响,某厂家拟在2022年举行某产品的促销活动,经调查测算,该产品的年销售量(即该厂的年产量) x万件与年促销费用m万元(m≥0)满足x= 4−.已知生产该产品的固定成本为 8万元,生产成本为16万元 / 万件,厂家将产品的销售价格定为万元 / 万件 (产品年平均成本)的1.5倍. (1)将2022年该产品的利润y万元表示为年促销费用m万元的函数; (2)该厂家2022年的促销费用投入多少万元时,厂家的利润最大? 19.已知角的顶点在坐标原点,始边与x轴正半轴重合,终边经过点. (1)求,; (2)求的值. 20.已知函数的定义域为,在上为增函数,且对任意的,都有 (1)试判断的奇偶性; (2)若,求实数的取值范围 21. “百姓开门七件事,事事都会生垃圾,垃圾分类益处多,环境保护靠你我”,为了推行垃圾分类,某公司将原处理垃圾可获利万元的一条处理垃圾流水线,通过技术改造后,开发引进生态项目.经过测算,发现该流水线改造后获利万元与技术投入万元之间满足的关系式:.该公司希望流水线改造后获利不少于万元,其中为常数,且. (1)试求该流水线技术投入的取值范围; (2)求流水线改造后获利的最大值,并求出此时的技术投入的值. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、D 【解析】解方程,再求并集. 【详解】 故选:D. 2、B 【解析】详解】,,, 故选B 点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小 3、D 【解析】转化为求或的实根个数之和,再构造函数可求解. 【详解】因为,所以, 所以, 所以或, 令,则或, 因为为增函数,且的值域为, 所以和都有且只有一个实根,且两个实根不相等, 所以原方程的实根的个数为. 故选:D 4、B 【解析】将拼凑为,利用“1”的妙用及其基本不等式求解即可. 【详解】∵, ∴,即, ∴ ,当且仅当,且时,即 ,时等号成立 故选:. 5、B 【解析】先求出集合B,再求A∪B. 【详解】因为,所以. 故选:B 6、B 【解析】先求出集合A,再根据补集定义求得答案. 【详解】由题意,,则. 故选:B. 7、D 【解析】直接利用函数图象的与平移变换求出函数图象对应解析式 【详解】解:将函数y=5sin(﹣3x)的周期扩大为原来的2倍, 得到函数y=5sin(x),再将函数图象左移, 得到函数y=5sin[(x)]=5sin()=5sin() 故选D 【点睛】本题考查函数y=Asin(ωx+φ)的图象变换,属于基础题. 8、C 【解析】, 当时,,为偶函数 当时,,为奇函数 当且时,既不奇函数又不是偶函数 故选 9、B 【解析】根据空间直线和平面平行、垂直的性质分别进行判断即可 【详解】①若m⊥α,n∥α,则m⊥n成立,故①正确, ②若α⊥γ,β⊥γ,则α∥β不成立,两个平面没有关系,故②错误 ③若α⊥β,m⊂α,则m⊥β不成立,可能m与β相交,故③错误, ④若α∥β,β∥γ,m⊥α,则m⊥γ,成立,故④正确, 故正确是①④, 故选B 【点睛】本题主要考查命题的真假判断,涉及空间直线和平面平行和垂直的判定和性质,考查学生的空间想象能力 10、D 【解析】令,则,由题意,有两个不同的解,有两个不相等的实根, 由图可知,得或,所以和各有两个解 当有两个解时,则, 当有两个解时,则或, 综上,的取值范围是,故选D 点睛:本题考查函数性质的应用.本题为嵌套函数的应用,一般的,我们应用整体思想解决问题,所以令,则,由题意,有两个不同的解,有两个不相等的实根,再结合图象逐步分析,解得答案 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】利用辅助角公式化简函数解析式,再根据最值情况可得解. 【详解】由辅助角公式可知,,,, 当,时取最大值, 即, , 故答案为. 12、, 【解析】作出当,时,的图象,将其图象分别向左、向右平移个单位(横坐标不变,纵坐标变为原来的或2倍),得到函数的图象,令,求得的最大值,可得所求范围 【详解】解:因为满足,即; 又由,可得, 画出当,时,的图象, 将在,的图象向右平移个单位(横坐标不变,纵坐标变为原来的2倍), 再向左平移个单位(横坐标不变,纵坐标变为原来的倍), 由此得到函数的图象如图: 当,时,,,, 又,所以, 令,由图像可得,则,解得, 所以当时,满足对任意的,,都有, 故的范围为, 故答案为:, 13、##0.6 【解析】根据同角三角函数的关系,结合角A的范围,即可得答案. 【详解】因为角A为的内角,所以, 因为, 所以. 故答案为: 14、16 【解析】由零点定义,可得关于的方程.去绝对值分类讨论化简.将对数式化为指数式,再去绝对值可得四个方程.结合韦达定理,求得各自方程两根的乘积,即可得所有根的积. 【详解】函数的零点 即 所以 去绝对值可得或 即或 去绝对值可得或,或 当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得 当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得 当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得 当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得 综上可得所有零点的乘积为 故答案为: 【点睛】本题考查了函数零点定义,含绝对值方程的解法,分类讨论思想的应用,由韦达定理研究方程根的关系,属于难题. 15、 【解析】利用特殊值即可比较大小. 【详解】解:, , , 故. 故答案为:. 16、 【解析】设扇形的半径为,则扇形的面积为,直角三角形中, , ,面积为,由题意得,∴,∴,故答案为. 点睛:本题考查扇形的面积公式及三角形的面积公式的应用,考查学生的计算能力,属于基础题;设出扇形的半径,求出扇形的面积,再在直角三角形中求出高,计算直角三角形的面积,由条件建立等式,解此等式求出与的关系,即可得出结论. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、 (Ⅰ);(Ⅱ) . 【解析】【试题分析】(1)利用诱导公式和同角三角函数关系,可将原函数化简为;(2)首先除以,即除以,然后分子分母同时除以,将所求式子转化为仅含有的表达式来求解. 【试题解析】 (Ⅰ) (Ⅱ) = = 18、(1) (2)3万元 【解析】(1)依据题意列出该产品的利润y万元关于年促销费用m万元的解析式即可; (2)依据均值定理即可求得促销费用投入3万元时,厂家的利润最大. 【小问1详解】 由题意知,每万件产品的销售价格为(万元),x= 4− 则2022年的利润 【小问2详解】 ∵当时,, ∴,(当且仅当时等号成立) ∴,当且仅当万元时,(万元) 故该厂家2022年的促销费用投入3万元时,厂家的利润最大为29万元 19、(1),;(2). 【解析】(1)根据三角函数的定义,即可求出结果; (2)利用诱导公式对原式进行化简,代入,的值,即可求出结果. 【详解】解:(1)因为角的终边经过点,由三角函数的定义知 , (2)诱导公式,得 . 20、(1)奇函数(2) 【解析】(1)抽象函数用赋值法,再结合函数奇偶性的定义判断即可; (2)利用奇函数的单调性和定义及函数的单调性,联立不等式不等式组,再解不等式组即可. 【小问1详解】 因为函数定义域为, 令,得.令,得, 即,所以函数为奇函数 【小问2详解】 由(1)知函数为奇函数,又知函数的定义域为,在上为增函数,所以函数在上为增函数 因为,即, 所以,解得,所以实数的取值范围为 21、(1);(2)当时,,此时;当时,,此时. 【解析】(1)由题意得出,解此不等式即可得出的取值范围; (2)比较与的大小关系,分析二次函数在区间上的单调性,由此可得出函数的最大值及其对应的的值. 【详解】(1),,由题意可得,即, 解得,因此,该流水线技术投入的取值范围是; (2)二次函数的图象开口向下,且对称轴为直线. ①当时,即当时,函数在区间上单调递增,在区间上单调递减,所以,; ②当时,即当时,函数在区间上单调递减, 所以,. 综上所述,当时,;当时, 【点睛】本题考查二次函数模型的应用,同时也考查了二次函数最值的求解,考查分类讨论思想的应用,属于中等题.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服