资源描述
,9.2,两条直线位置关系,1/79,基础知识自主学习,课时作业,题型分类深度剖析,内容索引,2/79,基础知识自主学习,3/79,(1),两条直线平行与垂直,两条直线平行:,(,),对于两条不重合直线,l,1,、,l,2,,若其斜率分别为,k,1,、,k,2,,则有,l,1,l,2,.,(,),当直线,l,1,、,l,2,不重合且斜率都不存在时,,l,1,l,2,.,两条直线垂直:,(,),假如两条直线,l,1,、,l,2,斜率存在,设为,k,1,、,k,2,,则有,l,1,l,2,.,1.,两条直线位置关系,知识梳理,k,1,k,2,k,1,k,2,1,4/79,直线,l,1,:,A,1,x,B,1,y,C,1,0,,,l,2,:,A,2,x,B,2,y,C,2,0,,则,l,1,与,l,2,交点坐标,就是方程组,解,.,(,),当其中一条直线斜率不存在,而另一条斜率为,0,时,,l,1,l,2,.,(2),两条直线交点,2.,几个距离,(1),两点,P,1,(,x,1,,,y,1,),,,P,2,(,x,2,,,y,2,),之间距离,|,P,1,P,2,|,.,5/79,(2),点,P,0,(,x,0,,,y,0,),到直线,l,:,Ax,By,C,0,距离,d,.,(3),两条平行线,Ax,By,C,1,0,与,Ax,By,C,2,0(,其中,C,1,C,2,),间距离,d,.,6/79,1.,直线系方程,(1),与直线,Ax,By,C,0,平行直线系方程是,Ax,By,m,0(,m,R,且,m,C,).,(2),与直线,Ax,By,C,0,垂直直线系方程是,Bx,Ay,n,0(,n,R,).,2.,两直线平行或重合充要条件,直线,l,1,:,A,1,x,B,1,y,C,1,0,与直线,l,2,:,A,2,x,B,2,y,C,2,0,平行或重合充要条件是,.,知识拓展,A,1,B,2,A,2,B,1,0,7/79,3.,两直线垂直充要条件,直线,l,1,:,A,1,x,B,1,y,C,1,0,与直线,l,2,:,A,2,x,B,2,y,C,2,0,垂直充要条件是,.,4.,过直线,l,1,:,A,1,x,B,1,y,C,1,0,与,l,2,:,A,2,x,B,2,y,C,2,0,交点直线系方程为,A,1,x,B,1,y,C,1,(,A,2,x,B,2,y,C,2,),0(,R,),,但不包含,l,2,.,5.,点到直线与两平行线间距离使用条件:,(1),求点到直线距离时,应先化直线方程为普通式,.,(2),求两平行线之间距离时,应先将方程化为普通式且,x,,,y,系数对应相等,.,A,1,A,2,B,1,B,2,0,8/79,判断以下结论是否正确,(,请在括号中打,“”,或,“”,),(1),当直线,l,1,和,l,2,斜率都存在时,一定有,k,1,k,2,l,1,l,2,.(,),(2),假如两条直线,l,1,与,l,2,垂直,则它们斜率之积一定等于,1.(,),(3),已知直线,l,1,:,A,1,x,B,1,y,C,1,0,,,l,2,:,A,2,x,B,2,y,C,2,0(,A,1,、,B,1,、,C,1,、,A,2,、,B,2,、,C,2,为常数,),,若直线,l,1,l,2,,则,A,1,A,2,B,1,B,2,0.(,),思索辨析,9/79,(5),直线外一点与直线上一点距离最小值就是点到直线距离,.(,),(6),若点,A,,,B,关于直线,l,:,y,kx,b,(,k,0),对称,则直线,AB,斜率等于,,且线段,AB,中点在直线,l,上,.(,),10/79,1.(,天津模拟,),过点,(1,0),且与直线,x,2,y,2,0,平行直线方程是,A.,x,2,y,1,0 B.,x,2,y,1,0,C.2,x,y,2,0 D.,x,2,y,1,0,考点自测,答案,解析,所以所求直线方程为,x,2,y,1,0.,11/79,2.(,教材改编,),已知点,(,a,2)(,a,0),到直线,l,:,x,y,3,0,距离为,1,,则,a,等于,答案,解析,12/79,3.,已知直线,l,过圆,x,2,(,y,3),2,4,圆心,且与直线,x,y,1,0,垂直,则,l,方程是,A.,x,y,2,0 B.,x,y,2,0,C.,x,y,3,0 D.,x,y,3,0,圆,x,2,(,y,3),2,4,圆心为点,(0,3),,,又因为直线,l,与直线,x,y,1,0,垂直,,所以直线,l,斜率,k,1.,由点斜式得直线,l,:,y,3,x,0,,化简得,x,y,3,0.,答案,解析,13/79,4.(,朝阳调研,),已知过点,A,(,2,,,m,),和点,B,(,m,,,4),直线为,l,1,,直线,2,x,y,1,0,为,l,2,,直线,x,ny,1,0,为,l,3,,若,l,1,l,2,,,l,2,l,3,,则实数,m,n,值为,A.,10 B.,2 C.0 D.8,答案,解析,解得,n,2,,,m,n,10.,14/79,5.(,教材改编,),若直线,(3,a,2),x,(1,4,a,),y,8,0,与,(5,a,2),x,(,a,4),y,7,0,垂直,则,a,_.,答案,解析,0,或,1,由两直线垂直充要条件,得,(3,a,2)(5,a,2),(1,4,a,)(,a,4),0,,解得,a,0,或,a,1.,15/79,题型分类深度剖析,16/79,题型一两条直线平行与垂直,例,1,(1),设不一样直线,l,1,:,2,x,my,1,0,,,l,2,:,(,m,1),x,y,1,0.,则,“,m,2,”,是,“,l,1,l,2,”,A.,充分而无须要条件,B.,必要而不充分条件,C.,充分必要条件,D.,既不充分也无须要条件,答案,解析,17/79,当,m,2,时,代入两直线方程中,,易知两直线平行,即充分性成立,.,当,l,1,l,2,时,显然,m,0,,从而有,m,1,,,解得,m,2,或,m,1,,,但当,m,1,时,两直线重合,不合要求,,故必要性成立,故选,C.,18/79,(2),已知直线,l,1,:,ax,2,y,6,0,和直线,l,2,:,x,(,a,1),y,a,2,1,0.,试判断,l,1,与,l,2,是否平行;,解答,19/79,方法一,当,a,1,时,,l,1,:,x,2,y,6,0,,,l,2,:,x,0,,,l,1,不平行于,l,2,;,当,a,0,时,,l,1,:,y,3,,,l,2,:,x,y,1,0,,,l,1,不平行于,l,2,;,综上可知,,a,1,时,,l,1,l,2,.,20/79,方法二,由,A,1,B,2,A,2,B,1,0,,,得,a,(,a,1),1,2,0,,,由,A,1,C,2,A,2,C,1,0,,得,a,(,a,2,1),1,6,0,,,故当,a,1,时,,l,1,l,2,.,21/79,当,l,1,l,2,时,求,a,值,.,解答,22/79,方法一,当,a,1,时,,l,1,:,x,2,y,6,0,,,l,2,:,x,0,,,l,1,与,l,2,不垂直,故,a,1,不成立;,当,a,0,时,,l,1,:,y,3,,,l,2,:,x,y,1,0,,,l,1,不垂直于,l,2,;,当,a,1,且,a,0,时,,23/79,思维升华,(1),当直线方程中存在字母参数时,不但要考虑到斜率存在普通情况,也要考虑到斜率不存在特殊情况,.,同时还要注意,x,,,y,系数不能同时为零这一隐含条件,.,(2),在判断两直线平行、垂直时,也可直接利用直线方程系数间关系得出结论,.,24/79,跟踪训练,1,已知两直线,l,1,:,x,y,sin,1,0,和,l,2,:,2,x,sin,y,1,0,,求,值,使得:,(1),l,1,l,2,;,解答,25/79,方法一,当,sin,0,时,直线,l,1,斜率不存在,,l,2,斜率为,0,,显然,l,1,不平行于,l,2,.,26/79,方法二,由,A,1,B,2,A,2,B,1,0,,得,2sin,2,1,0,,,又,B,1,C,2,B,2,C,1,0,,所以,1,sin,0,,即,sin,1.,27/79,(2),l,1,l,2,.,解答,因为,A,1,A,2,B,1,B,2,0,是,l,1,l,2,充要条件,,所以,2sin,sin,0,,即,sin,0,,所以,k,,,k,Z,.,故当,k,,,k,Z,时,,l,1,l,2,.,28/79,题型二两条直线交点与距离问题,例,2,(1)(,长沙模拟,),求经过两条直线,l,1,:,x,y,4,0,和,l,2,:,x,y,2,0,交点,且与直线,2,x,y,1,0,垂直直线方程为,_.,答案,解析,x,2,y,7,0,l,1,与,l,2,交点坐标为,(1,3).,设与直线,2,x,y,1,0,垂直直线方程为,x,2,y,c,0,,,则,1,2,3,c,0,,,c,7.,所求直线方程为,x,2,y,7,0.,29/79,(2),直线,l,过点,P,(,1,2),且到点,A,(2,3),和点,B,(,4,5),距离相等,则直线,l,方程为,_.,答案,解析,x,3,y,5,0,或,x,1,30/79,方法一,当直线,l,斜率存在时,设直线,l,方程为,y,2,k,(,x,1),,即,kx,y,k,2,0.,即,|3,k,1|,|,3,k,3|,,,即,x,3,y,5,0.,当直线,l,斜率不存在时,直线,l,方程为,x,1,,也符合题意,.,故所求直线,l,方程为,x,3,y,5,0,或,x,1.,31/79,即,x,3,y,5,0.,当,l,过,AB,中点时,,AB,中点为,(,1,4).,直线,l,方程为,x,1.,故所求直线,l,方程为,x,3,y,5,0,或,x,1.,32/79,思维升华,(1),求过两直线交点直线方程方法,求过两直线交点直线方程,先解方程组求出两直线交点坐标,再结合其它条件写出直线方程,.,(2),利用距离公式应注意:,点,P,(,x,0,,,y,0,),到直线,x,a,距离,d,|,x,0,a,|,,到直线,y,b,距离,d,|,y,0,b,|,;,两平行线间距离公式要把两直线方程中,x,,,y,系数化为相等,.,33/79,跟踪训练,2,(1),如图,设一直线过点,(,1,1),,它被两平行直线,l,1,:,x,2,y,1,0,,,l,2,:,x,2,y,3,0,所截线段中点在直线,l,3,:,x,y,1,0,上,求其方程,.,解答,34/79,与,l,1,、,l,2,平行且距离相等直线方程为,x,2,y,2,0.,设所求直线方程为,(,x,2,y,2),(,x,y,1),0,,,即,(1,),x,(2,),y,2,0.,又直线过,(,1,1),,,(1,)(,1),(2,)1,2,0.,所求直线方程为,2,x,7,y,5,0.,35/79,(2)(,济南模拟,),若动点,P,1,(,x,1,,,y,1,),,,P,2,(,x,2,,,y,2,),分别在直线,l,1,:,x,y,5,0,,,l,2,:,x,y,15,0,上移动,则,P,1,P,2,中点,P,到原点距离最小值是,答案,解析,x,1,y,1,5,0,,,x,2,y,2,15,0.,(,x,1,x,2,),(,y,1,y,2,),20,,即,x,y,10.,y,x,10,,,P,(,x,,,x,10),,,36/79,题型三对称问题,命题点,1,点关于点中心对称,例,3,过点,P,(0,1),作直线,l,,使它被直线,l,1,:,2,x,y,8,0,和,l,2,:,x,3,y,10,0,截得线段被点,P,平分,则直线,l,方程为,_.,答案,解析,x,4,y,4,0,设,l,1,与,l,交点为,A,(,a,8,2,a,),,则由题意知,点,A,关于点,P,对称点,B,(,a,2,a,6),在,l,2,上,代入,l,2,方程得,a,3(2,a,6),10,0,,解得,a,4,,即点,A,(4,0),在直线,l,上,所以直线,l,方程为,x,4,y,4,0.,37/79,命题点,2,点关于直线对称,例,4,如图,已知,A,(4,0),,,B,(0,4),,从点,P,(2,0),射出光线经直线,AB,反射后再射到直线,OB,上,最终经直线,OB,反射后又回到,P,点,则光线所经过旅程是,答案,解析,38/79,直线,AB,方程为,x,y,4,,点,P,(2,0),关于直线,AB,对称点为,D,(4,2),,关于,y,轴对称点为,C,(,2,0).,39/79,命题点,3,直线关于直线对称问题,例,5,(,泰安模拟,),已知直线,l,:,2,x,3,y,1,0,,求直线,m,:,3,x,2,y,6,0,关于直线,l,对称直线,m,方程,.,解答,40/79,在直线,m,上任取一点,如,M,(2,0),,则,M,(2,0),关于直线,l,对称点,M,必在直线,m,上,.,设对称点,M,(,a,,,b,),,则,41/79,设直线,m,与直线,l,交点为,N,,则,得,N,(4,3).,又,m,经过点,N,(4,3).,由两点式得直线,m,方程为,9,x,46,y,102,0.,42/79,思维升华,处理对称问题方法,(1),中心对称,直线关于点对称可转化为点关于点对称问题来处理,.,(2),轴对称,点,A,(,a,,,b,),关于直线,Ax,By,C,0(,B,0),对称点,A,(,m,,,n,),,则,直线关于直线对称可转化为点关于直线对称问题来处理,.,43/79,跟踪训练,3,已知直线,l,:,3,x,y,3,0,,求:,(1),点,P,(4,5),关于,l,对称点;,解答,44/79,设,P,(,x,,,y,),关于直线,l,:,3,x,y,3,0,对称点为,P,(,x,,,y,),,,又,PP,中点在直线,3,x,y,3,0,上,,45/79,把,x,4,,,y,5,代入,得,x,2,,,y,7,,,P,(4,5),关于直线,l,对称点,P,坐标为,(,2,7).,46/79,(2),直线,x,y,2,0,关于直线,l,对称直线方程;,解答,用,分别代换,x,y,2,0,中,x,,,y,,,化简得,7,x,y,22,0.,47/79,(3),直线,l,关于,(1,2),对称直线,.,解答,在直线,l,:,3,x,y,3,0,上取点,M,(0,3),关于,(1,2),对称点,M,(,x,,,y,),,,l,关于,(1,2),对称直线平行于,l,,,k,3,,,对称直线方程为,y,1,3,(,x,2),,,即,3,x,y,5,0.,48/79,一、平行直线系,因为两直线平行,它们斜率相等或它们斜率都不存在,所以两直线平行时,它们一次项系数与常数项有必定联络,.,典例,1,求与直线,3,x,4,y,1,0,平行且过点,(1,2),直线,l,方程,.,妙用直线系求直线方程,思想与方法系列,20,因为所求直线与,3,x,4,y,1,0,平行,所以,可设该直线方程为,3,x,4,y,c,0(,c,1).,规范解答,思想方法指导,49/79,解,依题意,设所求直线方程为,3,x,4,y,c,0(,c,1),,,又因为直线过点,(1,2),,,所以,3,1,4,2,c,0,,解得,c,11.,所以,所求直线方程为,3,x,4,y,11,0.,返回,50/79,二、垂直直线系,因为直线,A,1,x,B,1,y,C,1,0,与,A,2,x,B,2,y,C,2,0,垂直充要条件为,A,1,A,2,B,1,B,2,0.,所以,当两直线垂直时,它们一次项系数有必要关系,.,能够考虑用直线系方程求解,.,典例,2,求经过,A,(2,1),,且与直线,2,x,y,10,0,垂直直线,l,方程,.,依据两直线垂直特征设出方程,再由待定系数法求解,.,规范解答,思想方法指导,51/79,解,因为所求直线与直线,2,x,y,10,0,垂直,所以设该直线方程为,x,2,y,C,1,0,,又直线过点,(2,1),,所以有,2,2,1,C,1,0,,解得,C,1,0,,即所求直线方程为,x,2,y,0.,返回,52/79,三、过直线交点直线系,典例,3,求经过两直线,l,1,:,x,2,y,4,0,和,l,2,:,x,y,2,0,交点,P,,且与直线,l,3,:,3,x,4,y,5,0,垂直直线,l,方程,.,可分别求出直线,l,1,与,l,2,交点及直线,l,斜率,k,,直接写出方程;也能够利用过交点直线系方程设直线方程,再用待定系数法求解,.,规范解答,思想方法指导,几何画板展示,53/79,解,方法一,解方程组,即,4,x,3,y,6,0.,方法二,设直线,l,方程为,x,2,y,4,(,x,y,2),0,,,返回,54/79,即,(1,),x,(,2),y,4,2,0.,又,l,l,3,,,3,(1,),(,4),(,2),0,,,解得,11.,直线,l,方程为,4,x,3,y,6,0.,返回,55/79,课时作业,56/79,1.,设,a,R,,则,“,a,1,”,是,“,直线,l,1,:,ax,2,y,1,0,与直线,l,2,:,x,(,a,1),y,4,0,平行,”,A.,充分无须要条件,B.,必要不充分条件,C.,充分必要条件,D.,既不充分也无须要条件,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,(1),充分性:当,a,1,时,,直线,l,1,:,x,2,y,1,0,与直线,l,2,:,x,2,y,4,0,平行;,(2),必要性:当直线,l,1,:,ax,2,y,1,0,与直线,l,2,:,x,(,a,1),y,4,0,平行时有,a,2,或,1.,所以,“,a,1,”,是,“,直线,l,1,:,ax,2,y,1,0,与直线,l,2,:,x,(,a,1),y,4,0,平行,”,充分无须要条件,故选,A.,13,57/79,1,2,3,4,5,6,7,8,9,10,11,12,2.(,济南模拟,),“,m,3,”,是,“,直线,l,1,:,2(,m,1),x,(,m,3),y,7,5,m,0,与直线,l,2,:,(,m,3),x,2,y,5,0,垂直,”,A.,充分无须要条件,B.,必要不充分条件,C.,充要条件,D.,既不充分也无须要条件,答案,解析,由,l,1,l,2,,得,2(,m,1)(,m,3),2(,m,3),0,,,m,3,或,m,2.,m,3,是,l,1,l,2,充分无须要条件,.,13,58/79,3.(,山东省试验中学质检,),从点,(2,3),射出光线沿与向量,a,(8,4),平行直线射到,y,轴上,则反射光线所在直线方程为,A.,x,2,y,4,0 B.2,x,y,1,0,C.,x,6,y,16,0 D.6,x,y,8,0,答案,解析,由直线与向量,a,(8,4),平行知:过点,(2,3),直线斜率,k,,所以直线方程为,y,3,(,x,2),,其与,y,轴交点坐标为,(0,2),,又点,(2,3),关于,y,轴对称点为,(,2,3),,所以反射光线过点,(,2,3),与,(0,2),,由两点式知,A,正确,.,1,2,3,4,5,6,7,8,9,10,11,12,13,59/79,1,2,3,4,5,6,7,8,9,10,11,12,4.(,兰州,月考,),一只虫子从点,O,(0,0),出发,先爬行到直线,l,:,x,y,1,0,上,P,点,再从,P,点出发爬行到点,A,(1,,,1),,则虫子爬行最短旅程是,答案,解析,13,60/79,1,2,3,4,5,6,7,8,9,10,11,12,5.(,绵阳模拟,),若,P,,,Q,分别为直线,3,x,4,y,12,0,与,6,x,8,y,5,0,上任意一点,则,|,PQ,|,最小值为,由题意可知,|,PQ,|,最小值为这两条平行直线间距离,,答案,解析,13,61/79,1,2,3,4,5,6,7,8,9,10,11,12,6.(,厦门模拟,),将一张坐标纸折叠一次,使得点,(0,2),与点,(4,0),重合,点,(7,3),与点,(,m,,,n,),重合,则,m,n,等于,答案,解析,13,62/79,由题意可知,纸折痕应是点,(0,2),与点,(4,0),连线中垂线,,即直线,y,2,x,3,,它也是点,(7,3),与点,(,m,,,n,),连线中垂线,,1,2,3,4,5,6,7,8,9,10,11,12,13,63/79,1,2,3,4,5,6,7,8,9,10,11,12,7.(,忻州训练,),已知两直线,l,1,:,ax,by,4,0,和,l,2,:,(,a,1),x,y,b,0,,,若,l,1,l,2,,且坐标原点到这两条直线距离相等,则,a,b,_.,答案,解析,13,64/79,经检验,两种情况均符合题意,,1,2,3,4,5,6,7,8,9,10,11,12,13,65/79,1,2,3,4,5,6,7,8,9,10,11,12,8.,已知直线,l,1,:,ax,y,1,0,,直线,l,2,:,x,y,3,0,,若直线,l,1,倾斜角为,,则,a,_,;若,l,1,l,2,,则,a,_,;若,l,1,l,2,,则两平行直线间距离为,_.,答案,解析,1,1,若,l,1,l,2,,则,a,1,1,(,1),0,,故,a,1,;,若,l,1,l,2,,则,a,1,,,l,1,:,x,y,1,0,,两平行直线间距离,d,13,66/79,1,2,3,4,5,6,7,8,9,10,11,12,9.,如图,已知直线,l,1,l,2,,点,A,是,l,1,,,l,2,之间定点,点,A,到,l,1,,,l,2,之间距离分别为,3,和,2,,点,B,是,l,2,上一动点,作,AC,AB,,且,AC,与,l,1,交于点,C,,则,ABC,面积最小值为,_.,答案,解析,6,13,67/79,以,A,为坐标原点,平行于,l,1,直线为,x,轴,建立如图所表示直角坐标系,设,B,(,a,,,2),,,C,(,b,3).,AC,AB,,,1,2,3,4,5,6,7,8,9,10,11,12,13,68/79,1,2,3,4,5,6,7,8,9,10,11,12,10.(,重庆模拟,),在平面直角坐标系内,到点,A,(1,2),,,B,(1,5),,,C,(3,6),,,D,(7,,,1),距离之和最小点坐标是,_.,答案,解析,(2,4),13,69/79,如图,设平面直角坐标系中任一点,P,,,P,到点,A,(1,2),,,B,(1,5),,,C,(3,6),,,D,(7,,,1),距离之和为,|,PA,|,|,PB,|,|,PC,|,|,PD,|,|,PB,|,|,PD,|,|,PA,|,|,PC,|,|,BD,|,|,AC,|,|,QA,|,|,QB,|,|,QC,|,|,QD,|,,故四边形,ABCD,对角线,交点,Q,即为所求距离之和最小点,.,A,(1,2),,,B,(1,5),,,C,(3,6),,,D,(7,,,1),,,直线,AC,方程为,y,2,2(,x,1),,直线,BD,方程为,y,5,(,x,1).,1,2,3,4,5,6,7,8,9,10,11,12,13,70/79,1,2,3,4,5,6,7,8,9,10,11,12,11.,已知方程,(2,),x,(1,),y,2(3,2,),0,与点,P,(,2,2).,(1),证实:对任意实数,,该方程都表示直线,且这些直线都经过同一定点,并求出这一定点坐标;,证实,显然,2,与,(1,),不可能同时为零,故对任意实数,,,该方程都表示直线,.,方程可变形为,2,x,y,6,(,x,y,4),0,,,13,71/79,证实,过,P,作直线垂线段,PQ,,由垂线段小于斜线段知,|,PQ,|,|,PM,|,,,当且仅当,Q,与,M,重合时,,|,PQ,|,|,PM,|,,,此时对应直线方程是,y,2,x,2,,即,x,y,4,0.,但直线系方程唯独不能表示直线,x,y,4,0,,,1,2,3,4,5,6,7,8,9,10,11,12,13,72/79,1,2,3,4,5,6,7,8,9,10,11,12,12.(,北京朝阳区模拟,),已知,ABC,顶点,A,(5,1),,,AB,边上中线,CM,所在直线方程为,2,x,y,5,0,,,AC,边上高,BH,所在直线方程为,x,2,y,5,0,,求直线,BC,方程,.,解答,13,73/79,依题意知:,k,AC,2,,,A,(5,1),,,l,AC,为,2,x,y,11,0,,,代入,2,x,y,5,0,,得,2,x,0,y,0,1,0,,,即,6,x,5,y,9,0.,1,2,3,4,5,6,7,8,9,10,11,12,13,74/79,*13.,已知三条直线:,l,1,:,2,x,y,a,0(,a,0),;,l,2,:,4,x,2,y,1,0,;,l,3,:,x,y,1,0,,且,l,1,与,l,2,间距离是,.,(1),求,a,值;,又,a,0,,解得,a,3.,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,75/79,(2),能否找到一点,P,,使,P,同时满足以下三个条件:,点,P,在第一象限;,点,P,到,l,1,距离是点,P,到,l,2,距离,;,点,P,到,l,1,距离与点,P,到,l,3,距离之比是,若能,求点,P,坐标;若不能,说明理由,.,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,76/79,假设存在点,P,,设点,P,(,x,0,,,y,0,).,若点,P,满足条件,,则点,P,在与,l,1,,,l,2,平行直线,l,:,2,x,y,c,0,上,,若点,P,满足条件,,由点到直线距离公式,,1,2,3,4,5,6,7,8,9,10,11,12,13,77/79,即,|2,x,0,y,0,3|,|,x,0,y,0,1|,,所以,x,0,2,y,0,4,0,或,3,x,0,2,0,;,因为点,P,在第一象限,所以,3,x,0,2,0,不可能,.,1,2,3,4,5,6,7,8,9,10,11,12,13,78/79,1,2,3,4,5,6,7,8,9,10,11,12,13,79/79,
展开阅读全文