资源描述
2023-2024学年九上数学期末模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是
A.55° B.60° C.65° D.70°
2.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为( )
A. B. C. D.
3.一元二次方程的根的情况为( )
A.有两个相等的实数根 B.有两个不相等的实数根
C.只有一个实数根 D.没有实数根
4.如图,将图形用放大镜放大,这种图形的变化属于( )
A.平移 B.相似 C.旋转 D.对称
5.如图,在矩形中,,,以为直径作.将矩形绕点旋转,使所得矩形的边与相切,切点为,边与相交于点,则的长为( )
A.2.5 B.1.5 C.3 D.4
6.下列方程中,没有实数根的是( )
A.x2﹣2x﹣3=0 B.(x﹣5)(x+2)=0
C.x2﹣x+1=0 D.x2=1
7.如图所示,是的中线,是上一点,,的延长线交于,( )
A. B. C. D.
8.已知关于x的二次方程有两个实数根,则k的取值范围是( )
A. B.且 C. D.且
9.如图,直线y1= x+1与双曲线y2=交于A(2,m)、B(﹣6,n)两点.则当y1<y2时,x的取值范围是( )
A.x>﹣6或0<x<2 B.﹣6<x<0或x>2 C.x<﹣6或0<x<2 D.﹣6<x<2
10.已知线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标为( )
A.(1,2) B.(2,9) C.(5,3) D.(–9,–4)
二、填空题(每小题3分,共24分)
11.已知点A(m,1)与点B(3,n)关于原点对称,则m+n=_________。
12.如图,菱形ABCD和菱形ECGF的边长分别为2和3,点D在CE上,且∠A=120°,B,C,G三点在同一直线上,则BD与CF的位置关系是_____;△BDF的面积是_____.
13.一个多边形的每个外角都是36°,这个多边形是______边形.
14.学生晓华5次数学成绩为86,87,89,88,89,则这5个数据的中位数是___________.
15.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.
16.在平面直角坐标系中,点P(2,﹣3)关于原点对称点P′的坐标是_____.
17.如图,与⊙相切于点,,,则⊙的半径为__________.
18.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.
三、解答题(共66分)
19.(10分)解方程组:.
20.(6分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?
21.(6分)如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=1m,窗高CD=1.5m,并测得OE=1m,OF=5m,求围墙AB的高度.
22.(8分)《厉害了,我的国》是在央视财经频道的纪录片《辉煌中国》的基础上改编而成的电影记录了过去五年以来中国桥、中国路、中国车、中国港、中国网等超级工程的珍贵影像.小明和小红都想去观看这部电影,但是只有一-张电影票,于是他们决定采用摸球的办法决定谁去看电影,规则如下:在一个不透明的袋子中装有编号为的四个球(除编号外都相同),小明从中随机摸出一个球,记下数字后放回,小红再从中摸出一个球,记下数字,若两次数字之和大于则小明获得电影票,若两次数字之和小于则小红获得电影票.
(1)请用列表或画树状图的方法表示出两数和的所有可能的结果;
(2)分别求出小明和小红获得电影票的概率.
23.(8分)如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.5米,标杆为3米,且BC=1米,CD=6米,求电视塔的高ED.
24.(8分)某商店销售一种商品,每件成本8元,规定每件商品售价不低于成本,且不高于20元,经市场调查每天的销售量y(件)与每件售价x(元)满足一次函数关系,部分数据如下表:
售价x(元件)
10
11
12
13
14
x
销售量y(件)
100
90
80
70
(1)将上面的表格填充完整;
(2)设该商品每天的总利润为w元,求w与x之间的函数表达式;
(3)计算(2)中售价为多少元时,获得最大利润,最大利润是多少?
25.(10分)如图,在边长为的正方形中,点是射线上一动点(点不与点重合),连接,点是线段上一点,且,连接.
求证:;
求证:;
直接写出的最小值.
26.(10分)已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于点O.
(1)求证:OE=OF;
(2)若点O为CD的中点,求证:四边形DECF是矩形.
参考答案
一、选择题(每小题3分,共30分)
1、C
【分析】根据旋转的性质和三角形内角和解答即可.
【详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.
∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,
∴∠ACD=90°-20°=70°,
∵点A,D,E在同一条直线上,
∴∠ADC+∠EDC=180°,
∵∠EDC+∠E+∠DCE=180°,
∴∠ADC=∠E+20°,
∵∠ACE=90°,AC=CE
∴∠DAC+∠E=90°,∠E=∠DAC=45°
在△ADC中,∠ADC+∠DAC+∠DCA=180°,
即45°+70°+∠ADC=180°,
解得:∠ADC=65°,
故选C.
此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.
2、B
【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【详解】解:∵袋子中球的总数为:2+3=5,有2个黄球,
∴从袋子中随机摸出一个球,它是黄球的概率为:.
故选B.
3、D
【分析】先根据计算判别式的值,然后根据判别式的意义判断方程根的情况.
【详解】因为△=,
所以方程无实数根.
故选:D.
本题考查了根的判别式:一元二次方程的根与有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
4、B
【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.
【详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.
故选:B.
本题考查相似形的识别,联系图形根据相似图形的定义得出是解题的关键.
5、D
【分析】连接OE,延长EO交 CD于点G,作于点H,通过旋转的性质和添加的辅助线得到四边形和都是矩形,利用勾股定理求出的长度,最后利用垂径定理即可得出答案.
【详解】连接OE,延长EO交 CD于点G,作于点H
则
∵矩形ABCD绕点C旋转所得矩形为
∴四边形和都是矩形,
∵四边形都是矩形
即
故选:D.
本题主要考查矩形的性质,勾股定理及垂径定理,掌握矩形的性质,勾股定理及垂径定理是解题的关键.
6、C
【分析】分别计算出各选项中方程的判别式或方程的根,从而做出判断.
【详解】解:A.方程x2﹣2x﹣3=0中△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等的实数根,不符合题意;
B.方程(x﹣5)(x+2)=0的两根分别为x1=5,x2=﹣2,不符合题意;
C.方程x2﹣x+1=0中△=(﹣1)2﹣4×1×1=﹣3<0,没有实数根,符合题意;
D.方程x2=1的两根分别为x1=1,x2=﹣1,不符合题意;
故选:C.
本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.
7、D
【分析】作DH∥BF交AC于H,根据三角形中位线定理得到FH=HC,根据平行线分线段成比例定理得到,据此计算得到答案.
【详解】解:作DH∥BF交AC于H,
∵AD是△ABC的中线,
∴BD=DC,
∴FH=HC,
∴FC=2FH,
∵DH∥BF,,
,
∴AF:FC=1:6,
∴AF:AC=1:7,
故选:D.
本题考查平行线分线段成比例定理,作出平行辅助线,灵活运用定理、找准比例关系是解题的关键.
8、B
【分析】根据一元二次方程根的判别式让∆=b2−4ac≥1,且二次项的系数不为1保证此方程为一元二次方程.
【详解】解:由题意得:且,
解得:且,
故选:B.
本题考查了一元二次方程根的判别式,方程有2个实数根应注意两种情况:∆≥1,二次项的系数不为1.
9、C
【解析】分析:根据函数图象的上下关系,结合交点的横坐标找出不等式y1<y1的解集,由此即可得出结论.
详解:
观察函数图象,发现:
当x<-6或0<x<1时,直线y1=x+1的图象在双曲线y1=的图象的下方,
∴当y1<y1时,x的取值范围是x<-6或0<x<1.
故选C.
点睛:考查了反比例函数与一次函数的交点问题,解题的关键是依据函数图象的上下关系解不等式.本题属于基础题,难度不大,解决该题型题目时,根据函数图象位置的上下关系结合交点的坐标,找出不等式的解集是关键.
10、A
【解析】∵线段CD是由线段AB平移得到的,
而点A(−1,4)的对应点为C(4,7),
∴由A平移到C点的横坐标增加5,纵坐标增加3,
则点B(−4,−1)的对应点D的坐标为(1,2).
故选A
二、填空题(每小题3分,共24分)
11、-1
【分析】根据两个点关于原点对称时,它们的坐标符号相反,可直接得到m=-3,n=-1进而得到答案.
【详解】解:∵点A(m,1)与点B(3,n)关于原点对称,
∴m=-3,n=-1,
∴m+n=-1,
故答案为:-1.
此题主要考查了关于原点对称点的坐标特点,关键是掌握点的坐标的变化规律.
12、平行
【分析】由菱形的性质易求∠DBC=∠FCG=30°,进而证明BD∥CF;设BF交CE于点H,根据菱形的对边平行,利用相似三角形对应边成比例列式求出CH,然后求出DH以及点B到CD的距离和点G到CE的距离,最后根据三角形的面积公式列式进行计算即可得解.
【详解】解:∵四边形ABCD和四边形ECGF是菱形,
∴AB∥CE,
∵∠A=120°,
∴∠ABC=∠ECG=60°,
∴∠DBC=∠FCG=30°,
∴BD∥CF;
如图,设BF交CE于点H,
∵CE∥GF,
∴△BCH∽△BGF,
∴=,即=,
解得:CH=1.2,
∴DH=CD﹣CH=2﹣1.2=0.8,
∵∠A=120°,∠ABC=∠ECG=60°,
∴点B到CD的距离为2×=,点G到CE的距离为3×=,
∴阴影部分的面积=.
故答案为:平行;.
本题考查了菱形的性质,相似三角形的判定和性质以及解直角三角形,求出DH的长度以及点B到CD的距离和点G到CE的距离是解题的关键.
13、十
【分析】根据正多边形的性质,边数等于360°除以每一个外角的度数.
【详解】∵一个多边形的每个外角都是36°,
∴n=360°÷36°=10,
故答案为:十.
本题考查多边形内角与外角,掌握多边形的外角和为解题关键.
14、1
【分析】根据中位数的概念求解即可.
【详解】这组数据按照从小到大的顺序排列为:86,87,1,89,89,
则这5个数的中位数为:1.
故答案为:1.
本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
15、y=2(x+3)2+1
【解析】由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式.
【详解】抛物线y=2x2平移,使顶点移到点P(﹣3,1)的位置,所得新抛物线的表达式为y=2(x+3)2+1.
故答案为:y=2(x+3)2+1
本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
16、(﹣2,3).
【解析】根据坐标轴的对称性即可写出.
【详解】解:根据中心对称的性质,得点P(2,﹣3)关于原点的对称点P′的坐标是(﹣2,3).
故答案为:(﹣2,3).
此题主要考查直角坐标系内的坐标变换,解题的关键是熟知直角坐标系的特点.
17、
【解析】与⊙相切于点,得出△ABO为直角三角形,再由勾股定理计算即可.
【详解】解:连接OB,
∵与⊙相切于点,
∴OB⊥AB,△ABO为直角三角形,
又∵,,
由勾股定理得
故答案为:
本题考查了切线的性质,通过切线可得垂直,进而可应用勾股定理计算,解题的关键是熟知切线的性质.
18、3:2
【解析】因为DE∥BC,所以,因为EF∥AB,所以,所以,故答案为: 3:2.
三、解答题(共66分)
19、
【分析】方程组利用加减消元法求出解即可.
【详解】解:,
①﹣②×4得:11y=﹣11,即y=﹣1,
把y=﹣1代入②得:x=2,
则方程组的解为.
此题主要考查二元一次方程组的求解,解题的关键是熟知加减消元法的运用.
20、10,1.
【解析】试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程 求出边长的值.
试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的 一边的长为m,由题意得 化简,得,解得:
当时,(舍去),
当时,,
答:所围矩形猪舍的长为10m、宽为1m.
考点:一元二次方程的应用题.
21、1m
【分析】首先根据DO=OE=1m,可得∠DEB=15°,然后证明AB=BE,再证明△ABF∽△COF,可得,然后代入数值可得方程,解出方程即可得到答案.
【详解】解:延长OD,
∵DO⊥BF,
∴∠DOE=90°,
∵OD=1m,OE=1m,
∴∠DEB=15°,
∵AB⊥BF,
∴∠BAE=15°,
∴AB=BE,
设AB=EB=x m,
∵AB⊥BF,CO⊥BF,
∴AB∥CO,
∴△ABF∽△COF,
∴,
,
解得:x=1.
经检验:x=1是原方程的解.
答:围墙AB的高度是1m.
此题主要考查了相似三角形的应用,解决问题的关键是求出AB=BE,根据相似三角形的判定方法证明△ABF∽△COF.
22、(1)答案见解析;(2)小明获得电影票的概率;小红获得电影粟的概率.
【分析】(1)利用树状图展示所有16种等可能的等可能的结果数;
(2)找出次数字之和大于5的结果数和两次数字之和小于5的结果数,然后根据概率公式计算即可.
【详解】解:(1)画树状图为:
两个数字之和有2、3、4、5、3、4、5、6、4、5、6、7、5、6、7、8这16种等可能的结果数;
(2)由树状图知,两个数字之和有种等可能的结果数,
两次数字之和大于的结果有种,
小明获得电影票的概率
两次数字之和小于的结果有种,
小红获得电影粟的概率.
综上,小明获得电影票的概率,小红获得电影粟的概率.
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
23、电视塔的高度为12米.
【分析】作AH⊥ED交FC于点G,交ED于H;把实际问题抽象到相似三角形中,利用相似三角形的对应边成比例列出方程,解方程即可.
【详解】解:过A点作AH⊥ED,交FC于G,交ED于H.
由题意可得:△AFG∽△AEH,AG=BC=1米,GH=CD=6米,HD=CG=AB=1.1米,
∴AH=AG+GH=7米,FG=FC-CG=1.1米
∴=
即=,
解得:EH=10.1.
∴ED=EH+ HD =10.1+1.1=12(米).
∴电视塔的高度为12米.
此题考查的是相似三角形的应用,掌握构造相似三角形的方法和相似三角形的判定及性质是解决此题的关键.
24、(1)见解析;(2)w=﹣10x2+280x﹣1600;(3)售价为14元时,获得最大利润,最大利润是360元.
【分析】(1)设y=kx+b,由待定系数法可列出方程组:,解得:
则y=﹣10x+200,当x=14时,y=60.(2)由题意得,w与x之间的函数表达式为:w=(x﹣8)(﹣10x+200)=﹣10x2+280x﹣1600;(3)∵w=﹣10x2+280x﹣1600=﹣10(x﹣14)2+360,故售价为14元时,获得最大利润,最大利润是360元.
【详解】解:(1)设销售量y(件)与每件售价x(元)满足一次函数关系为y=kx+b,
∴,
解得:,
∴销售量y(件)与每件售价x(元)满足一次函数关系为y=﹣10x+200,
当x=14时,y=60,
故答案为:60,﹣10x+200;
(2)由题意得,w与x之间的函数表达式为:w=(x﹣8)(﹣10x+200)=﹣10x2+280x﹣1600;
(3)∵w=﹣10x2+280x﹣1600=﹣10(x﹣14)2+360,
故售价为14元时,获得最大利润,最大利润是360元.
本题的考点是一次函数及二次函数的综合应用.方法是根据题意列出函数式,再根据二次函数的性质求解.
25、(1)证明见解析;(2)证明见解析;(3)的最小值为
【分析】(1)由得出,进而得出,即可得出;
(2)首先由正方形的性质得出,,然后由(1)中结论得出,进而即可判定,进而得出
(3)首先由(1)中得出,然后构建圆,找出DE的最小值即可得解.
【详解】
∵四边形是正方形
由(1)知
,
又
由(1)中,得
若使有最小值,则DE最小,由(2)中,点E在以AB为直径的圆上,如图所示
∴DE最小值为DO-OE=
∴的最小值为
此题主要考查相似三角形的性质,以及动点综合问题,解题关键是找出最小值.
26、证明见解析
【解析】(1)由于CE平分∠BCD,那么∠DCE=∠BCE,而EF∥BC,于是∠OEC=∠BCE,等量代换∠OEC=∠DCE,那么OE=OC,同理OC=OF,等量代换有OE=OF;
(2)由于O是CD中点,故OD=OC,而OE=OF,那么易证四边形DECF是平行四边形,又CE、CF是∠BCD、∠DCG的角平分线,∠BCD+∠DCG=180°那么易得∠ECF=90°,从而可证四边形DECF是矩形.
【详解】解:(1)∵CE平分∠BCD、CF平分∠GCD,
∴∠BCE=∠DCE,∠DCF=∠GCF.
∵EF∥BC,
∴∠BCE=∠FEC,∠EFC=∠GCF,
∴∠DCE=∠FEC,∠EFC=∠DCF,
∴OE=OC,OF=OC,
∴OE=OF;
(2)∵点O为CD的中点,
∴OD=OC.
又∵OE=OF,
∴四边形DECF是平行四边形.
∵CE平分∠BCD、CF平分∠GCD,
∴∠DCE=∠BCD,∠DCF=∠DCG,
∴∠DCE+∠DCF=(∠BCD+∠DCG)=90°,
即∠ECF=90°,
∴四边形DECF是矩形.
本题主要考查平行线的性质及矩形的判定,证得OE=OF,得出四边形DECF是平行四边形是解题的关键,注意角平分线的应用.
展开阅读全文