收藏 分销(赏)

勾股定理课堂练习6.doc

上传人:s4****5z 文档编号:9408142 上传时间:2025-03-25 格式:DOC 页数:1 大小:26KB 下载积分:10 金币
下载 相关 举报
勾股定理课堂练习6.doc_第1页
第1页 / 共1页
本文档共1页,全文阅读请下载到手机保存,查看更方便
资源描述
18.2.3课堂练习 1.若△ABC的三边a、b、c,满足(a-b)(a2+b2-c2)=0,则△ABC是( ) A.等腰三角形; B.直角三角形; C.等腰三角形或直角三角形; D.等腰直角三角形。 2.若△ABC的三边a、b、c,满足a:b:c=1:1:,试判断△ABC的形状。 3.已知:如图,四边形ABCD,AB=1,BC=,CD=,AD=3,且AB⊥BC。求:四边形ABCD的面积。 4.已知:在△ABC中,∠ACB=90°,CD⊥AB于D,且CD2=AD·BD。求证:△ABC中是直角三角形。 七、课后练习, 1.若△ABC的三边a、b、c满足a2+b2+c2+50=6a+8b+10c, 求△ABC的面积。 2.在△ABC中,AB=13cm,AC=24cm,中线BD=5cm。 求证:△ABC是等腰三角形。 3.已知:如图,∠1=∠2,AD=AE,D为BC上一点,且BD=DC,AC2=AE2+CE2。 求证:AB2=AE2+CE2。 4.已知△ABC的三边为a、b、c,且a+b=4,ab=1,c=,试判定△ABC的形状。 参考答案: 课堂练习: 1.C;2.△ABC是等腰直角三角形; 3. 4.提示:∵AC2=AD2+CD2,BC2=CD2+BD2,∴AC2+BC2=AD2+2CD2+BD2=AD2+2AD·BD+BD2=(AD+BD)2=AB2,∴∠ACB=90°。 课后练习: 1.6;2.提示:因为AD2+BD2=AB2,所以AD⊥BD,根据线段垂直平分线的判定可知AB=BC。 3.提示:有AC2=AE2+CE2得∠E=90°;由△ADC≌△AEC,得AD=AE,CD=CE,∠ADC=∠BE=90°,根据线段垂直平分线的判定可知AB=AC,则AB2=AE2+CE2。 4.提示:直角三角形,用代数方法证明,因为(a+b)2=16,a2+2ab+b2=16,ab=1,所以a2+b2=14。又因为c2=14,所以a2+b2=c2 。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服