1、一、回顾1、椭圆的定义是什么?2、椭圆的标准方程、焦点坐标是什么?定义图象方程焦点a.b.c的关系yoxF1F2yoF1F2|MF1|+|MF2|=2a(2a|F1F2|)a2=b2+c2F(c,0)F(0,c)oF1F21.椭圆的定义椭圆的定义和和 等于常数等于常数2a(2a|F1F2|0)的点的轨迹的点的轨迹.平面内与两定点平面内与两定点F1、F2的距离的的距离的2.引入问题:引入问题:差差等于常数等于常数的点的轨迹是什么呢?的点的轨迹是什么呢?平面内与两定点平面内与两定点F1、F2的距离的的距离的如图如图如图如图(A)(A),|MF|MF1 1|-|MF|MF2 2|=2|=2a a如图
2、如图如图如图(B)(B),|MF|MF2 2|-|MF|MF1 1|=2|=2a a上面上面上面上面 两条合起来叫做双曲线两条合起来叫做双曲线两条合起来叫做双曲线两条合起来叫做双曲线由由由由可得:可得:可得:可得:|MF|MF1 1|-|MF|MF2 2|=2|=2a a (差的绝对值)差的绝对值)双曲线两条射线1、2a|F1F2|无轨迹无轨迹|MF1|-|MF2|=2a想一想?想一想?两个定点两个定点F1、F2双曲线的双曲线的焦点焦点;|F1F2|=2c 焦距焦距.oF2F1M 平面内与两个定点平面内与两个定点F1,F2的距离的差的距离的差等于常数等于常数 的点的轨迹叫做的点的轨迹叫做双曲线
3、双曲线.动画的绝对值的绝对值(小于(小于F1F2)注意注意定义定义:|MF1|-|MF2|=2a1.建系建系.F2F1MxOy2.设点;设点;3.列式;列式;4.化简化简.求曲线方程的步骤:求曲线方程的步骤:方程的推导方程的推导xyo设设M(x,y),双曲线的焦双曲线的焦距为距为2c(c0),F1(-c,0),F2(c,0)常数常数=2aF1F2M即即 (x+c)2+y2-(x-c)2+y2=+2a_以以F1,F2所在的直线为所在的直线为X轴,线轴,线段段F1F2的中点为原点建立直角的中点为原点建立直角坐标系坐标系1.建系建系.2.设点设点3.列式列式|MF1|-|MF2|=2a,如何求这如何
4、求这优美的优美的曲线的方程?曲线的方程?4.4.化简化简.oF2FMyx1F1F2yxoy2a2-x2b2=1焦点在焦点在y轴上的双曲线轴上的双曲线的标准方程的标准方程想一想想一想F2F1MxOyOMF2F1xy双曲线的标准方程双曲线的标准方程问题:如何判断双曲线的焦点在哪个轴上?问题:如何判断双曲线的焦点在哪个轴上?问题:如何判断双曲线的焦点在哪个轴上?问题:如何判断双曲线的焦点在哪个轴上?练习:写出以下双曲线的焦点坐标练习:写出以下双曲线的焦点坐标练习:写出以下双曲线的焦点坐标练习:写出以下双曲线的焦点坐标F(5,0)F(0,5)F(c,0)F(0,c)焦点在焦点在y轴上的双曲线轴上的双曲
5、线的标准方程的标准方程想一想想一想F2F1yxoF1(0,-c),F2(0,c),确定焦确定焦 点点 位置:位置:椭圆看分母大小椭圆看分母大小双曲看系数正负双曲看系数正负例例1 已知双曲线的焦点为已知双曲线的焦点为F1(-5,0),F2(5,0),双曲线上,双曲线上一点一点P到到F1、F2的距离的差的绝对值等于的距离的差的绝对值等于8,求双曲线,求双曲线的标准方程的标准方程.2 2a a=8,=8,c=5c=5a a=4,c=5=4,c=5b b2 2=5=52 2-4 42 2=9=9所以所求双曲线的标准方程为:所以所求双曲线的标准方程为:所以所求双曲线的标准方程为:所以所求双曲线的标准方程
6、为:根据双曲线的焦点在根据双曲线的焦点在根据双曲线的焦点在根据双曲线的焦点在 x x 轴上,设它的标准方程为:轴上,设它的标准方程为:轴上,设它的标准方程为:轴上,设它的标准方程为:解解:例例2:求适合下列条件的双曲线的标准方程求适合下列条件的双曲线的标准方程。1、焦点在焦点在 轴上轴上2、焦点为、焦点为且且要求双曲要求双曲线的标准线的标准方程需要方程需要几个条件几个条件思考:思考:3、经过点经过点焦点在焦点在y轴轴变式二变式二:上述方程表示焦点在上述方程表示焦点在y轴的双曲线时,求轴的双曲线时,求m的范围和焦点坐标。的范围和焦点坐标。分析分析:方程方程 表示双曲线时,则表示双曲线时,则m的取
7、值的取值范围范围_.变式一变式一:练习练习1 1:如果方程如果方程 表示双曲线,表示双曲线,求求m m的取值范围的取值范围.分析分析:例例3 已已知知双双曲曲线线的的焦焦点点在在y轴轴上上,并并且且双双曲曲线线上上两两点点P1、P2的的坐坐标标分分别别为为(3,)、(9/4,5),求双曲线的标准方程),求双曲线的标准方程.解解:因因为为双双曲曲线线的的焦焦点点在在y轴轴上上,所所以以设设所所求双曲线的标准方程为:求双曲线的标准方程为:因因为为点点P1、P2在在双双曲曲线线上上,所所以以点点P1、P2的的坐坐标标适适合合方方程程.将将(3,)、()分分别别代代入入方程方程中,得方程组中,得方程组
8、解解得得:a2=16,b2=9.故故所所求求双双曲曲线线的的标标准准方方程程为:为:例例4 一一炮炮弹弹在在某某处处爆爆炸炸,在在A处处听听到到爆爆炸炸声声的时间比在的时间比在B处晚处晚2 s.(1)爆炸点应在什么样的曲线上?)爆炸点应在什么样的曲线上?(2)已已知知A、B两两地地相相距距800 m,并并且且此此时时声速为声速为340 m/s,求曲线的方程,求曲线的方程.解解(1)由由声声速速及及A、B两两处处听听到到爆爆炸炸声声的的时时间间差差,可可知知A、B两两处处与与爆爆炸炸点点的的距距离离的的差差,因因此此爆爆炸炸点点应应位位于于以以A、B为为焦焦点点的的双双曲曲线线上上.(2)如如图
9、图814,建建立立直直角角坐坐标标系系xOy,使使 A、B两两点点在在x轴轴上上,并并且且点点O与与线线段段AB的的中中点重合点重合.设爆炸点设爆炸点P的坐标为(的坐标为(x,y),则),则 即即2a=680,a=340.2c=800,c=400 b2=c2a2=44400 所求双曲线的方程为:所求双曲线的方程为:(x0).定义定义定义定义图象图象图象图象方程方程方程方程焦点焦点焦点焦点a.b.c a.b.c 的关的关的关的关系系系系|MF1|-|MF2|=2a(2a0,b0,但a不一定大于b,c2=a2+b2ab0,a2=b2+c2双曲线与椭圆之间的区别与联系:双曲线与椭圆之间的区别与联系:双曲线与椭圆之间的区别与联系:双曲线与椭圆之间的区别与联系:|MF1|MF2|=2a|MF1|+|MF2|=2a x2a2+y2b2=1椭椭 圆圆双曲线双曲线y2x2a2-b2=1F(0,c)F(0,c)