ImageVerifierCode 换一换
格式:PPTX , 页数:25 ,大小:671.75KB ,
资源ID:821131      下载积分:11 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/821131.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学圆锥曲线与方程231双曲线的标准方程10苏教版.pptx)为本站上传会员【胜****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学圆锥曲线与方程231双曲线的标准方程10苏教版.pptx

1、一、回顾1、椭圆的定义是什么?2、椭圆的标准方程、焦点坐标是什么?定义图象方程焦点a.b.c的关系yoxF1F2yoF1F2|MF1|+|MF2|=2a(2a|F1F2|)a2=b2+c2F(c,0)F(0,c)oF1F21.椭圆的定义椭圆的定义和和 等于常数等于常数2a(2a|F1F2|0)的点的轨迹的点的轨迹.平面内与两定点平面内与两定点F1、F2的距离的的距离的2.引入问题:引入问题:差差等于常数等于常数的点的轨迹是什么呢?的点的轨迹是什么呢?平面内与两定点平面内与两定点F1、F2的距离的的距离的如图如图如图如图(A)(A),|MF|MF1 1|-|MF|MF2 2|=2|=2a a如图

2、如图如图如图(B)(B),|MF|MF2 2|-|MF|MF1 1|=2|=2a a上面上面上面上面 两条合起来叫做双曲线两条合起来叫做双曲线两条合起来叫做双曲线两条合起来叫做双曲线由由由由可得:可得:可得:可得:|MF|MF1 1|-|MF|MF2 2|=2|=2a a (差的绝对值)差的绝对值)双曲线两条射线1、2a|F1F2|无轨迹无轨迹|MF1|-|MF2|=2a想一想?想一想?两个定点两个定点F1、F2双曲线的双曲线的焦点焦点;|F1F2|=2c 焦距焦距.oF2F1M 平面内与两个定点平面内与两个定点F1,F2的距离的差的距离的差等于常数等于常数 的点的轨迹叫做的点的轨迹叫做双曲线

3、双曲线.动画的绝对值的绝对值(小于(小于F1F2)注意注意定义定义:|MF1|-|MF2|=2a1.建系建系.F2F1MxOy2.设点;设点;3.列式;列式;4.化简化简.求曲线方程的步骤:求曲线方程的步骤:方程的推导方程的推导xyo设设M(x,y),双曲线的焦双曲线的焦距为距为2c(c0),F1(-c,0),F2(c,0)常数常数=2aF1F2M即即 (x+c)2+y2-(x-c)2+y2=+2a_以以F1,F2所在的直线为所在的直线为X轴,线轴,线段段F1F2的中点为原点建立直角的中点为原点建立直角坐标系坐标系1.建系建系.2.设点设点3.列式列式|MF1|-|MF2|=2a,如何求这如何

4、求这优美的优美的曲线的方程?曲线的方程?4.4.化简化简.oF2FMyx1F1F2yxoy2a2-x2b2=1焦点在焦点在y轴上的双曲线轴上的双曲线的标准方程的标准方程想一想想一想F2F1MxOyOMF2F1xy双曲线的标准方程双曲线的标准方程问题:如何判断双曲线的焦点在哪个轴上?问题:如何判断双曲线的焦点在哪个轴上?问题:如何判断双曲线的焦点在哪个轴上?问题:如何判断双曲线的焦点在哪个轴上?练习:写出以下双曲线的焦点坐标练习:写出以下双曲线的焦点坐标练习:写出以下双曲线的焦点坐标练习:写出以下双曲线的焦点坐标F(5,0)F(0,5)F(c,0)F(0,c)焦点在焦点在y轴上的双曲线轴上的双曲

5、线的标准方程的标准方程想一想想一想F2F1yxoF1(0,-c),F2(0,c),确定焦确定焦 点点 位置:位置:椭圆看分母大小椭圆看分母大小双曲看系数正负双曲看系数正负例例1 已知双曲线的焦点为已知双曲线的焦点为F1(-5,0),F2(5,0),双曲线上,双曲线上一点一点P到到F1、F2的距离的差的绝对值等于的距离的差的绝对值等于8,求双曲线,求双曲线的标准方程的标准方程.2 2a a=8,=8,c=5c=5a a=4,c=5=4,c=5b b2 2=5=52 2-4 42 2=9=9所以所求双曲线的标准方程为:所以所求双曲线的标准方程为:所以所求双曲线的标准方程为:所以所求双曲线的标准方程

6、为:根据双曲线的焦点在根据双曲线的焦点在根据双曲线的焦点在根据双曲线的焦点在 x x 轴上,设它的标准方程为:轴上,设它的标准方程为:轴上,设它的标准方程为:轴上,设它的标准方程为:解解:例例2:求适合下列条件的双曲线的标准方程求适合下列条件的双曲线的标准方程。1、焦点在焦点在 轴上轴上2、焦点为、焦点为且且要求双曲要求双曲线的标准线的标准方程需要方程需要几个条件几个条件思考:思考:3、经过点经过点焦点在焦点在y轴轴变式二变式二:上述方程表示焦点在上述方程表示焦点在y轴的双曲线时,求轴的双曲线时,求m的范围和焦点坐标。的范围和焦点坐标。分析分析:方程方程 表示双曲线时,则表示双曲线时,则m的取

7、值的取值范围范围_.变式一变式一:练习练习1 1:如果方程如果方程 表示双曲线,表示双曲线,求求m m的取值范围的取值范围.分析分析:例例3 已已知知双双曲曲线线的的焦焦点点在在y轴轴上上,并并且且双双曲曲线线上上两两点点P1、P2的的坐坐标标分分别别为为(3,)、(9/4,5),求双曲线的标准方程),求双曲线的标准方程.解解:因因为为双双曲曲线线的的焦焦点点在在y轴轴上上,所所以以设设所所求双曲线的标准方程为:求双曲线的标准方程为:因因为为点点P1、P2在在双双曲曲线线上上,所所以以点点P1、P2的的坐坐标标适适合合方方程程.将将(3,)、()分分别别代代入入方程方程中,得方程组中,得方程组

8、解解得得:a2=16,b2=9.故故所所求求双双曲曲线线的的标标准准方方程程为:为:例例4 一一炮炮弹弹在在某某处处爆爆炸炸,在在A处处听听到到爆爆炸炸声声的时间比在的时间比在B处晚处晚2 s.(1)爆炸点应在什么样的曲线上?)爆炸点应在什么样的曲线上?(2)已已知知A、B两两地地相相距距800 m,并并且且此此时时声速为声速为340 m/s,求曲线的方程,求曲线的方程.解解(1)由由声声速速及及A、B两两处处听听到到爆爆炸炸声声的的时时间间差差,可可知知A、B两两处处与与爆爆炸炸点点的的距距离离的的差差,因因此此爆爆炸炸点点应应位位于于以以A、B为为焦焦点点的的双双曲曲线线上上.(2)如如图

9、图814,建建立立直直角角坐坐标标系系xOy,使使 A、B两两点点在在x轴轴上上,并并且且点点O与与线线段段AB的的中中点重合点重合.设爆炸点设爆炸点P的坐标为(的坐标为(x,y),则),则 即即2a=680,a=340.2c=800,c=400 b2=c2a2=44400 所求双曲线的方程为:所求双曲线的方程为:(x0).定义定义定义定义图象图象图象图象方程方程方程方程焦点焦点焦点焦点a.b.c a.b.c 的关的关的关的关系系系系|MF1|-|MF2|=2a(2a0,b0,但a不一定大于b,c2=a2+b2ab0,a2=b2+c2双曲线与椭圆之间的区别与联系:双曲线与椭圆之间的区别与联系:双曲线与椭圆之间的区别与联系:双曲线与椭圆之间的区别与联系:|MF1|MF2|=2a|MF1|+|MF2|=2a x2a2+y2b2=1椭椭 圆圆双曲线双曲线y2x2a2-b2=1F(0,c)F(0,c)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服