资源描述
一 算子
1 称为非扩张的,如果
,。
2 称为压缩的,如果存在,使得
3 称为渐进非扩张的,如果存在一序列,,使得
4 称为渐进伪压缩的,如果存在一序列,
,对任意给定的存在,使得
5 称为严格渐进伪压缩的,如果存在一序列,
,对任意给定的存在,使得
如果 称为伪压缩的。
6 称为中间意义的渐进非扩张的,如果
7 称为一致Lipschitz的,如果存在常数,使得
8 称为强伪压缩的,如果对,存在和常数,满足
9 称为 强伪压缩的,如果对,存在和一个严格增的函数,满足使得
10 称为伪压缩的,如果对,存在和一个增的函数,满足使得
11 称为拟伪压缩的,如果对,存在和一个样增的函数,满足使得
Let be a mapping. Then is called
12 monotone if
13 strongly monotone if there exists a positive real number such that
for constant . This implies that
,
that is, is expansive and when , it is expansive.
14 Lipschitz continuous if there exists a positive real number such that
15 cocoercive, if there exists a positive real number such that
clearly, every cocoercive map is Lipschitz continuous.
16 Relaxed cocoercive, if there exists a positive real number such that
17 Relaxed cocoercive , if there exists a positive real number such that
for , is strongly monotone. This class of maps is more general that the class of strongly monotone maps. It is easy to see that we have the following implication: strongly monotonicity implying relaxed cocoercivity.
二 算法
1 Man 迭代序列
(1) Man 迭代序列
(2) 修正的Man 迭代序列
(3) 带平均误差的修正的Man 迭代序列
2 Ishikawa 迭代序列
(1) Ishikawa 迭代序列
(2) 修正的Ishikawa 迭代序列
(3) 带平均误差的修正的Ishikawa 迭代序列
3 Happern 迭代
4 粘性迭代
5修正的Reich-Takahashi型迭代序列
如果 是具有序列 的渐进非扩张映象,则由下式定义的序列
称为修正的Reich-Takahashi型迭代序列, 其中 是区间 中满足某些限制的实数序列, 是 中的有界序列。
6 渐进非扩张映射的三步迭代
7 有限个非映射族的隐式迭代过程
即 ,
8 杂交迭代
(1)非扩张映射
(2)渐进非扩张映射
其中,当
展开阅读全文