资源描述
28.2 与圆有关的位置关系(第4课时)
教学内容
1.两个圆相离(外离、内含),两个圆相切(外切、内切),两个圆相交等概念.
2.设两圆的半径分别为r1、r2,圆心距(两圆圆心的距离)为d,则有两圆的位置关系,d与r1和r2之间的关系.
外离d>r1+r2
外切d=r1+r2
相交│r1-r2│<d<r1+r2
内切d=│r1-r2│
内含0≤d<│r1-r2│(其中d=0,两圆同心)
教学目标
了解两个圆相离(外离、内含),两个圆相切(外切、内切),两圆相交、圆心距等概念.
理解两圆的互解关系与d、r1、r2等量关系的等价条件并灵活应用它们解题.
通知复习直线和圆的位置关系和结合操作几何,迁移到圆与圆之间的五种关系并运用它们解决一些具体的题目.
重难点、关键
1.重点:两个圆的五种位置关系中的等价条件及它们的运用.
2.难点与关键:探索两个圆之间的五种关系的等价条件及应用它们解题.
教学过程
一、复习引入
请同学们独立完成下题.
在你的随堂练习本上,画出直线L和圆的三种位置关系,并写出等价关系.
老师点评:直线L和圆的位置关系有三种:相交、相切、相离,如图(a)~(c)所示.(其中d表示圆心到直线L的距离,r是⊙O的半径)
(a) 相交 d<r (b) 相切 d=r (3) 相离 d>r
二、探索新知
请每位同学完成下面一段话的操作几何,四人一组讨论你能得到什么结论.
(1)在一张透明纸上作一个⊙O1,再在另一张透明纸上作一个与⊙O1半径不等的⊙O2,把两张透明纸叠在一起,固定⊙O1,平移⊙O2,⊙O1与⊙O2有几种位置关系?
(2)设两圆的半径分别为r1和r2(r1<r2),圆心距(两圆圆心的距离)为d,你又能得到什么结论?
老师用两圆在黑板上运动并点评:
可以发现,可以会出现以下五种情况:
(1)图(a)中,两个圆没有公共点,那么就说这两个圆相离;
(2)图(b)中,两个圆只有一个公共点,那么就说这两个圆相切.
(3)图(c)中,两个圆有两个公共点,那么就说两个圆相交.
(4)图(d)中,两个圆只有一个公共点,那么就说这两个圆相切.为了区分(e)和(d)图,把(b)图叫做外切,把(d)图叫做内切.
(5)图(e)中,两个圆没有公共点,那么就说这两个圆相离,为了区分图(e)和图(e),把图(a)叫做外离,把图(e)叫做内含.
图(f)是(e)甲的一种特殊情况──圆心相同,我们把它称为同心圆.
问题(分组讨论)如果两圆的半径分别为r1和r2(r1<r2),圆心距(两圆圆心的距离为d,请你们结合直线和圆位置关系中的等价关系和刚才五种情况的讨论,填完下列空格:
两圆的位置关系 d与r1和r2之间的关系
外离
外切
相交
内切
内含
老师分析点评:外离没有交点,因此d>r1+r2;
外切只有一个交点,结合图(a),也很明显d=r1+r2;
相交有两个交点,如图两圆相交于A、B两点,连接O1A和O2A,很明显r2-r1<d<r1+r2;内切是内含加相切,因此d=r2-r1;内含是0≤d<r2-r1(其中d=0,两圆同心)反之,同样成立,因此,我们就有一组等价关系(老师填完表格).
例1.两个同样大小的肥皂泡黏在一起,其剖面如图1所示(点O,O′是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求∠TPN的大小.
(1) (2)
分析:要求∠TPN,其实就是求∠OPO′的角度,很明显,∠POO′是正三角形,如图2所示.
解:∵PO=OO′=PO′
∴△PO′O是一个等边三角形
∴∠OPO′=60°
又∵TP与NP分别为两圆的切线,
∴∠TPO=90°,∠NPO′=90°
∴∠TPN=360°-2×90°-60°=120°
例2.如图1所示,⊙O的半径为7cm,点A为⊙O外一点,OA=15cm,
求:(1)作⊙A与⊙O外切,并求⊙A的半径是多少?
(1) (2)
(2)作⊙A与⊙O相内切,并求出此时⊙A的半径.
分析:(1)作⊙A和⊙O外切,就是作以A为圆心的圆与⊙O的圆心距d=rO+rA;(2)作OA与⊙O相内切,就是作以A为圆心的圆与⊙O的圆心距d=rA-rO.
解:如图2所示,(1)作法:以A为圆心,rA=15-7=8为半径作圆,则⊙A的半径为8cm
(2)作法:以A点为圆心,rA′=15+7=22为半径作圆,则⊙A的半径为22cm
三、巩固练习
教材P109 练习.
四、应用拓展
例3.如图1所示,半径不等的⊙O1、⊙O2外离,线段O1O2分别交⊙O1、⊙O2于点A、B,MN为两圆的内公切线,分别切⊙O1、⊙O2于点M、N,连结MA、NB.
(1)试判断∠AMN与∠BNM的数量关系?并证明你的结论.
(2)若将“MN”为两圆的内公切线改为“MN为两圆的外公切线”,其余条件不变,∠AMN与∠BNM是否一定满足某种等量关系?完成下图并写出你的结论.
(1) (2)
分析:(1)要说明∠AMN与∠BNM的数量关系,只要说明∠MAB和∠NBA的数量关系,只要说明∠O2BN和∠O1AM的数量关系,又因为∠O2BN=∠O1NB,∠O1MA=∠O1AM,因此,只要连结O1M,O2N,再说明∠MO1A=∠NO2B,这两个角相等是显然的.
(2)画出图形,从上题的解答我们可以得到一个思路,连结O1M、O2N,则∠O1MN+∠O2NM=180°,∴∠MO1A+∠NO2B=180°,∴∠O2NB+∠O1MA=90°,∴∠AMN+∠BNM=90°.
解:(1)∠AMN=∠BNM
证明:连结O1M、O2N,如图2所示
∵MN为两圆的内公切线,
∴O1M⊥MN,O2N⊥MN
∴O1M∥O2N
∴∠MO1A=∠NO2B
∵O1M=O1A,O2N=O2B
∴∠O1MA=∠O2NB
∴∠AMN=∠BNM
(2)∵∠AMN+∠BNM=90°
证明:连结O1M、O2N
∵MN为两圆的外公切线.
∴O1M⊥MN,O2N⊥MN
∴O1M∥O2N
∴∠MO1A+∠NO2B=180°
∵O1M=O1A,O2N=O2B
∴∠O1MA+∠O2NB=×180°=90°
∴∠AMN+∠BNM=180°-90°=90°
五、归纳小结(学生归纳,老师点评)
本节课应掌握:
1.圆和圆位置关系的概念:两个圆相离(外离、内含),相切(外切、内切),相交.
2.设两圆的半径为r1,r2,圆心距为d(r1<r2)
则有:外离d>r1+r2
外切d=r1+r2
相交r2-r1<d<r1+r2
内切d=r2-r1
内含0≤d<r2-r1(当d=0时,两圆同心)
展开阅读全文