1、182 勾股定理的逆定理(三)一、教学目标1应用勾股定理的逆定理判断一个三角形是否是直角三角形。 2灵活应用勾股定理及逆定理解综合题。3进一步加深性质定理与判定定理之间关系的认识。二、重点、难点1重点:利用勾股定理及逆定理解综合题。2难点:利用勾股定理及逆定理解综合题。三、例题的意图分析例1(补充)利用因式分解和勾股定理的逆定理判断三角形的形状。例2(补充)使学生掌握研究四边形的问题,通常添置辅助线把它转化为研究三角形的问题。本题辅助线作平行线间距离无法求解。创造3、4、5勾股数,利用勾股定理的逆定理证明DE就是平行线间距离。例3(补充)勾股定理及逆定理的综合应用,注意条件的转化及变形。四、课
2、堂引入勾股定理和它的逆定理是黄金搭档,经常综合应用来解决一些难度较大的题目。五、例习题分析例1(补充)已知:在ABC中,A、B、C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c。试判断ABC的形状。分析:移项,配成三个完全平方;三个非负数的和为0,则都为0;已知a、b、c,利用勾股定理的逆定理判断三角形的形状为直角三角形。例2(补充)已知:如图,四边形ABCD,ADBC,AB=4,BC=6,CD=5,AD=3。求:四边形ABCD的面积。分析:作DEAB,连结BD,则可以证明ABDEDB(ASA);DE=AB=4,BE=AD=3,EC=EB=3;在DEC中,3、4、
3、5勾股数,DEC为直角三角形,DEBC;利用梯形面积公式可解,或利用三角形的面积。例3(补充)已知:如图,在ABC中,CD是AB边上的高,且CD2=ADBD。求证:ABC是直角三角形。 分析:AC2=AD2+CD2,BC2=CD2+BD2AC2+BC2=AD2+2CD2+BD2=AD2+2ADBD+BD2=(AD+BD)2=AB2六、课堂练习1若ABC的三边a、b、c,满足(ab)(a2b2c2)=0,则ABC是( )A等腰三角形;B直角三角形;C等腰三角形或直角三角形;D等腰直角三角形。2若ABC的三边a、b、c,满足a:b:c=1:1:,试判断ABC的形状。3已知:如图,四边形ABCD,A
4、B=1,BC=,CD=,AD=3,且ABBC。求:四边形ABCD的面积。4已知:在ABC中,ACB=90,CDAB于D,且CD2=ADBD。求证:ABC中是直角三角形。七、课后练习,1若ABC的三边a、b、c满足a2+b2+c2+50=6a+8b+10c,求ABC的面积。2在ABC中,AB=13cm,AC=24cm,中线BD=5cm。求证:ABC是等腰三角形。3已知:如图,1=2,AD=AE,D为BC上一点,且BD=DC,AC2=AE2+CE2。求证:AB2=AE2+CE2。4已知ABC的三边为a、b、c,且a+b=4,ab=1,c=,试判定ABC的形状。 课后反思:八、参考答案:课堂练习:1
5、C;2ABC是等腰直角三角形; 3 4提示:AC2=AD2+CD2,BC2=CD2+BD2,AC2+BC2=AD2+2CD2+BD2=AD2+2ADBD+BD2=(AD+BD)2=AB2,ACB=90。课后练习:16;2提示:因为AD2+BD2=AB2,所以ADBD,根据线段垂直平分线的判定可知AB=BC。 3提示:有AC2=AE2+CE2得E=90;由ADCAEC,得AD=AE,CD=CE,ADC=BE=90,根据线段垂直平分线的判定可知AB=AC,则AB2=AE2+CE2。4提示:直角三角形,用代数方法证明,因为(a+b)2=16,a2+2ab+b2=16,ab=1,所以a2+b2=14。又因为c2=14,所以a2+b2=c2 。