1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,*,第十二章全等三角形,12.3角平分线性质,第1课时角平分线性质,第1页,D,第2页,2,如图,,,OP平分,AOB,,,PC,OA,,,PD,OB,,,垂足分别是C,,,D,,,以下结论中错误是(),A,PCPD,B,OCOD,C,CPO,DPO,D,OCPC,3,如图,,,OP平分,MON,,,PA,ON于点A,,,点Q是射线OM上一个动点,,,若PA2,,,则PQ最小值为(),A,1,B,2,C,3,D,4,D,B,第3页,4,如图,,,AD,BC,,,ABC平分线BP与,BAD平分线AP相交于
2、点P,,,作PE,AB于点E.若PE2,,,则两平行线AD与BC间距离为(),A,1,B,2,C,3,D,4,5,如图,,,在,ABC中,,,C90,,,AD是角平分线,,,DE,AB于E,,,且DE3,cm,,,BD5,cm,,,则BC,_,cm,.,D,8,第4页,6,(,广西,),如图,,,在,ABC中,,,CD平分,ACB交AB于点D,,,DE,AC于点E,,,DF,BC于点F,,,且BC4,,,DE2,,,则,BCD面积是,_,7,如图,,,Rt,ABC中,,,C90,,,AC3,,,BC4,,,AB5,,,AD平分,BAC.则S,ACD,S,ABD,_,.,4,3,5,第5页,第6
3、页,9,如图,,,ABC,B外角平分线BD与,C外角平分线CE相交于点P,,,若点P到AC距离为2,,,则点P到AB距离为(),A,1,B,2,C,3,D,4,10,如图,,,已知,AOB40,,,OM平分,AOB,,,MA,OA于A,,,MB,OB于B,,,则,MAB度数为(),A,50,B,40,C,30,D,20,B,D,第7页,11,如图,,,在,ABC中,,,C90,,,ACBC,,,AD平分,CAB,,,交BC于D,,,DE,AB于E,,,且AB6,cm,,,则,BED周长是,_,12,(,孝感,),我们把两组邻边相等四边形叫做,“,筝形,”,如图,,,四边形ABCD是一个筝形,,
4、,其中ABCB,,,ADCD,,,对角线AC,,,BD相交于点O,,,OE,AB,,,OF,CB,,,垂足分别为E,,,F.求证:OEOF.,解:由,SSS,可证,ABD,CBD,,,ABD,CBD,,,从而由角平分线性质证得,OE,OF,6cm,第8页,13,如图,,,已知点D是,ABC平分线上一点,,,点P在BD上,,,PA,AB,,,PC,BC,,,垂足分别为点A,,,C.求证:,ADB,CDB.,证实:,BD,平分,ABC,,,PA,AB,,,PC,BC,,,PA,PC,,,ABP,CBP,,,APD,CPD,,,又,PD,PD,,,ADP,CDP,(,SAS,),,,ADP,CDP,
5、,,ADB,CDB,第9页,14,如图,,,在,ABC中,,,C90,,,AD是,BAC平分线,,,DE,AB于E,,,F在AC上,,,BDDF.,求证:(1)CFEB;(2)ABAF2EB.,证实:(,1,)由角平分线性质证,DC,DE,,,再证,Rt,CFD,Rt,EBD,(,HL,),,,CF,EB,(,2,)证,Rt,ACD,Rt,AED,(,HL,),,,AC,AE,,,AB,AE,EB,AC,EB,AF,CF,EB,,,AB,AF,2EB,第10页,15,如图,,,在四边形ABCD中,,,BCBA,,,ADCD,,,BD平分,ABC,,,求证:,A,C180.,证实:过,D,作,DE,BA,延长线于,E,,,DF,BC,于,F,,,由角平分线性质证,得,DE,DF,,,再证,Rt,ADE,Rt,CDF,,,DAE,C,,,BAD,DAE,180,,,BAD,C,180,第11页,方法技能:,1,应用角平分线性质时,,,角平分线、角平分线上点到角两边距离两个缺一不可,,,不能错用为角平分线上点到角两边任意点距离相等,2,用角平分线性质证实线段相等,,,能够直接得出结论,,,不需再用证实三角形全等来完成,易错提醒:,应用角平分线性质时,,,易忽略“到角两边距离”而犯错,第12页,