1、第二章 实数2.2平方根(一)教学目标:1、了解算术平方根的概念,会用根号表示一个数的算术平方根。 2、会求一个正数的算术平方根。 3、了解算术平方根的性质。教学重点:算术平方根的概念、性质,会用根号表示一个正数的算术平方根。教学难点:算术平方根的概念、性质。教学过程:一、问题引入1.教师活动:回顾上节课的拼图活动及探索无理数的过程,提出问题:面积为13的正方形的边长究竟是多少?学生活动:(1)完成课本P32的填空:a2=_b2=_,c2=_d2=_e2=_,f2=_(2)a,b,c,d,e,f中哪些是有理数,哪些是无理数?你能表示它们吗?2.师生互动集体交流后,说明无理数也需要一种表示方法。
2、二、讲授新课:算术平方根的概念:一般地,如果一个正数的平方等于,即,那么,这个正数就叫做的算术平方根。记为:“”读做根号。特别地,0的算术平方根是0。那么,则= b2=3,则b=;这样的话,一个非负数的算术平方根就可以表示为。例1 分别写出下列各数的算术平方根(要求一个数的算术平方根,一般的方法是先按平方的概念来找哪个数的平方等于这个数。)例2自由下落物体的高度h(米)与下落时间t(秒)的关系为h=4.9t2.有一铁球从19.6 米高的建筑物上自由下落,到达地面需要多长时间 ?学生活动:一个同学在黑板上板演,其他同学在练习本上做,然后交流。师生互动:完成引例中的,则,以后我们可以利用计算器求出
3、这个数的近似值。三、随堂练习:P39 1四、小结:(1)内容总结:算术平方根的定义、表示;的双重非负性。(2)方法归纳:转化的数学方法:即将陌生的问题转化为熟悉的问题解决。五、作业:P40 习题2.3 1 22.2平方根(二)教学目标:1、了解平方根的概念,会用根号表示一个数的平方根。 2、会求一个正数的平方根。 3、了解平方根和算术平方根的性质。 4、了解乘方和开方是互逆运算,会利用这个互逆运算求某些非负数的算术平方根和平方根。教学重点:了解平方根和开平方的概念、性质,会用根号表示一个正数的算术平方根和平方根。教学难点:平方根和算术平方根的区别。负数没有平方根,即负数不能进行开平方运算。教学
4、过程:一、复习提问1、算术平方根的概念,任何一个有理数都有算术平方根吗?算术平方根有什么性质。2、9的算术平方根是 ,3的平方是 ,还有其他的数的平方是9吗?二、讲授新课:1.想一想平方等于的数有几个?平方等于0.64的数呢?学生活动:学生思考,然后交流,得出平方根的定义。2.教师活动:一般地,如果一个数的平方等于,即,那么,这个数就叫做的平方根。也叫做二次方根。3和3的平方都是9,即9的平方根有两个3和3;9的算术平方根只有个,是3。3.学生活动:求出下列各数的平方根。16,0,25,三、议一议:(1)一个正数的有几个平方根?(2)0有几个平方根?(3)负数呢?教师活动:一个正数有两个平方根
5、,0只有一个平方根,它是0本身;负数没有平方根。学生活动:正数的两个平方根有什么关系吗?讨论,交流得出:一个正数有两个平方根,一个是的算术平方根,“”,另一个是“”,它们互为相反数。这两个平方根合起来,可以记做“”,读作“正、负根号”。 开平方:求一个数的平方根的运算,叫做开平方。其中叫做被开方数。(已知指数和幂,求底数的运算是开方运算)教师活动开平方和平方互为逆运算,我们可以利用平方运算来求平方根。四、例题精析:例1 求下列各数的平方根:(1)64,(2),(3)0.0004, (4)(-25)2, (5)11注意书写格式。五、随堂练习:P36 1、2例2 若;教师活动:通过例2,要学生进一步明白平方根与算术平方根在应用上的区别。六、想一想师生互动,讨论交流得出:0)七、小结:1. 平方根的定义、表示方法、求法、性质。平方根和算术平方根的区别和联系。2.使学生学到由特殊到一般的归纳法。八、作业:P36 习题2.4和试一试 P53 3