1、学 科 数学 (八年级下)备课教师授课时间教学内容17.2 实际问题与反比例函数(一)教学目标1、能灵活运用反比例函数的知识解决实际问题。2、经历“实际问题建立模型拓展应用”的过程发展学生分析问题,解决问题的能力教学重点教学难点重点:运用反比例函数的意义和性质解决实际问题。难点:从实际问题中寻找变量之间的关系,建立数学模型,教学时注意分析过程,渗透转化的数学思想。教学方法与手段启发引导、尝试研讨教学准备多媒体演示教 学 过 程 第一步;提问引入 创设情景活动一:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全,迅速通过这片湿地,他们沿着路线铺了若干块木板,构筑成一条临时通道,
2、从而顺利完成的任务的情境。(1) 当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强P(Pa)将如何变化?(2) 如果人和木板反湿地的压力合计600N,那么P是S 的反比例函数吗?为什么?(3) 如果人和木板对湿地的压力合计为600N,那么当木板面积为0.2m2时,压强是多少?活动二:某煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室。(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向下掘进多深?(3)当施工队施工的计划掘进到地下15m时,碰到了岩石,为了节约资
3、金,公司临时改设计,把储存室的深改为15m,相应的,储存室的底面积改为多少才能满足需要。(保留两位小数)?第二步:应用举例 巩固提高 例1近视眼镜的度数y(度)与焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m (1)试求眼镜度数y与镜片焦距x之间的函数关系式; (2)求1 000度近视眼镜镜片的焦距 【分析】 把实际问题转化为求反比例函数的解析式的问题 解:(1)设y=,把x=0.25,y=400代入,得400=, 所以,k=4000.25=100,即所求的函数关系式为y= (2)当y=1 000时,1000=,解得=0.1m 例2如图所示是某一蓄水池每小时的排水量V(m3/
4、h)与排完水池中的水所用的时间t(h)之间的函数关系图象 (1)请你根据图象提供的信息求出此蓄水池的蓄水量; (2)写出此函数的解析式; (3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是5 000m3,那么水池中的水将要多少小时排完? 【分析】 当蓄水总量一定时,每小时的排水量与排水所用时间成反比例 解:(1)因为当蓄水总量一定时,每小时的排水量与排水所用时间成反比例,所以根据图象提供的信息可知此蓄水池的蓄水量为:4 00012=48 000(m3) (2)因为此函数为反比例函数,所以解析式为:V=; (3)若要6h排完水池中的水,那么每小时的排水量为:V=
5、8000(m3); (4)如果每小时排水量是5 000m3,那么要排完水池中的水所需时间为:t= =8000(m3) 备选例题 (2009年中考四川)制作一种产品,需先将材料加热到达60后,再进行操作设该材料温度为y(),从加热开始计算的时间为x(分钟)据了解,设该材料加热时,温度y与时间x完成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图所示)已知该材料在操作加工前的温度为15,加热5分钟后温度达到60 (1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15时,须停止操作,那么从开始加热到停止操作,共经历了多少时间? 【
6、答案】 (1)将材料加热时的关系式为:y=9x+15(0x5),停止加热进行操作时的关系式为y=(x5);(2)20分钟第三步:课堂练习:1A、B两城市相距720千米,一列火车从A城去B城 (1)火车的速度v(千米/时)和行驶的时间t(时)之间的函数关系是 v= (2)若到达目的地后,按原路匀速原回,并要求在3小时内回到A城,则返回的速度不能低于 240千米/小时 2有一面积为60的梯形,其上底长是下底长的,若下底长为x,高为y,则y与x的函数关系是 y= 3(2005年中考长沙)已知矩形的面积为10,则它的长y与宽x之间的关系用图象大致可表示为 (A)4下列各问题中,两个变量之间的关系不是反
7、比例函数的是(C) A小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的关系 B菱形的面积为48cm2,它的两条对角线的长为y(cm)与x(cm)的关系 C一个玻璃容器的体积为30L时,所盛液体的质量m与所盛液体的体积V之间的关系 D压力为600N时,压强p与受力面积S之间的关系5面积为2的ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是(C) 开放探究 6为了预防流行性感冒,某学校对教室采用药熏消毒法进行消毒已知,药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图所示)现测得药物8分钟燃毕,此
8、室内空气中每立方米的含药量为6毫克,请你根据题中所提供的信息,解答下列问题: (1)药物燃烧时y关于x的函数关系式为: y=x ,自变量的取值范围是: 0x8 ;药物燃烧后y与x的函数关系式为: y= ; (2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过 30 分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?【答案】 有效,因为燃烧时第4分钟含药量开始高于3毫克,当到第16分钟含药量开始低于3毫克,这样含药量不低于3毫克的时间共有16-4=12分钟,故有效 教后修改板书设计板书设计课堂引入例题讲解随堂练习课时小结教学反思1学会把实际问题转化为数学问题,充分体现数学知识来源于实际生活又服务于实际生活这一原理2能用函数的观点分析、解决实际问题,让实际问题中的量的关系在数学模型中相互联系,并得到解决参考资料