1、相似的应用教学目标1 进一步巩固相似三角形的知识 2 能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题 3 通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力教学重点运用三角形相似的知识计算不能直接测量物体的长度和高度教学难点灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题)教学步骤、内容一.创设情境活动1教师活动:提出问题:1、学校操场上的国旗旗杆的高度是多少?你有什么办法测量?师生活动:学生小组讨论;师生共同交流2、介绍金字塔,例题讲解活动2(教材P
2、48页 例3测量金字塔高度问题)教师提出问题:例3:据史料记载,古希腊数学家、天文学家泰勒斯曾经利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成的两个相似三角形来测量金字塔的高度如图,如果木杆EF长2 m,它的影长FD为3 m,测得OA为201 m,求金字塔的高度BO (思考如何测出OA的长?)师生活动:学生小组讨论;师生共同交流,画出示意图:通过观察示意图,使学生建立起相似图形的几何直觉,并能明确表述求OA的方法中蕴含的数学知识。 分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质
3、,根据已知条件,求出金字塔的高度解:略(见教材P48-49页)活动3 课堂练习(见教材P50页)1 在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?活动4(教材P49例4测量河宽问题)教师提出问题:问题:估算河的宽度,你有什么好办法吗?例4 如图,为了估算河的宽度,我们可以在河对岸选定一个目标P,在近岸取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R如果测得QS = 45 m,ST = 90 m,QR = 6
4、0 m,求河的宽度PQ师生活动:学生先小组讨论;教师在这一活动中重点关注学生们探究的主动性,特别应关注那些平时学习有一定困难的学生,他们往往在解决实际问题时,显示出创造的能力,这也是树立这些学生自信心的一个契机,然后通过例4进一步完善学生们的想法,让学生体会用数学知识解决实际问题的成就感和快乐分析:设河宽PQ长为x m ,由于此种测量方法构造了三角形中的平行截线,故可得到相似三角形,因此有,即再解x的方程可求出河宽解:略(见教材P49)活动5 课堂练习(见教材P50页)(平行外截法)2、如图,测得BD=120 m,DC=60 m,EC=50 m,求河宽AB。活动6(教材P50例5盲区问题)教师
5、提出问题:例5 已知左、右并排的两棵大树的高分别是AB = 8 m和CD = 12 m,两树根部的距离BD = 5 m一个身高1.6 m的人沿着正对这两棵树的一条水平直路l从左向右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C? 分析:(见教材P49页)解:略(见教材P49-50页)教师活动:重点引导学生认真体会这一生活实际中常见的场景,借助图形把这一实际中常见的场景,抽象成数学图形,利用相似的性质解决这一实际问题,图形可以滞后给出,先让学生经历这一抽象的过程如果学生对于如何用数学语言表述有一定的困难,教师应与学生一起认真板书解答过程活动7 课堂练习小明想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图,他先测得留在墙上的影高1.2m,又测得地面部分的影长2.7m,他求得的树高是多少? 小结:谈谈本节课的收获作业设计教材P55页10、11