收藏 分销(赏)

九年级数学上册 21.2.2 第3课时 二次函数ya(xh)2k的图象和性质教案1 (新版)沪科版-(新版)沪科版初中九年级上册数学教案.doc

上传人:s4****5z 文档编号:7410764 上传时间:2025-01-03 格式:DOC 页数:2 大小:131KB 下载积分:10 金币
下载 相关 举报
九年级数学上册 21.2.2 第3课时 二次函数ya(xh)2k的图象和性质教案1 (新版)沪科版-(新版)沪科版初中九年级上册数学教案.doc_第1页
第1页 / 共2页
九年级数学上册 21.2.2 第3课时 二次函数ya(xh)2k的图象和性质教案1 (新版)沪科版-(新版)沪科版初中九年级上册数学教案.doc_第2页
第2页 / 共2页
本文档共2页,全文阅读请下载到手机保存,查看更方便
资源描述
第3课时 二次函数y=a(x+h)2+k的图象和性质                    1.会用描点法画出y=a(x+h)2+k的图象; 2.掌握形如y=a(x+h)2+k的二次函数图象的性质,并会应用;(重点) 3.理解二次函数y=a(x+h)2+k与y=ax2之间的联系.(难点) 一、情境导入 前面我们是如何研究二次函数y=ax2、y=ax2+k、y=a(x+h)2的图象与性质的?如何画出y=(x-2)2+1的图象? 二、合作探究 探究点一:二次函数y=a(x+h)2+k的图象与性质 【类型一】 抛物线y=a(x+h)2+k的开口方向、对称轴、顶点坐标及增减性 对于抛物线y=3(x-3)2+6,下列结论:①抛物线的开口向上;②对称轴为直线x=3;③顶点坐标为(3,6);④x>0时,y随x的增大而增大.其中正确结论的个数为(  ) A.1 B.2 C.3 D.4 解析:根据二次函数的性质对各小题分析判断即可.①∵a=3>0,∴抛物线的开口向上,正确;②对称轴为直线x=3,正确;③顶点坐标为(3,6),正确;④∵x>3时,y随x的增大而增大,即x>0时,图象的增减性不同.故选C. 方法总结:对于抛物线y=a(x+h)2+k,其对称轴为x=-h,顶点坐标为(-h,k).当a>0时,对称轴左边的图象,y随x的增大而减小,对称轴右边的图象,y随x的增大而增大,当a<0时,反之. 【类型二】 利用顶点确定y=a(x+h)2+k的解析式 已知抛物线y=ax2+bx+c的图象顶点为(-2,3),且过(-1,5),则抛物线的表达式为__________________. 解析:由题意可设抛物线的表达式为y=a(x+2)2+3,把x=-1,y=5代入得5=a(-1+2)2+3,所以a=2,所以抛物线的表达式为y=2(x+2)2+3. 【类型三】 利用y=a(x+h)2+k的图象解决问题 如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x-m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为-3,则点D的横坐标最大值为(  ) A.-3 B.1 C.5 D.8 解析:C、D两点是抛物线与x轴的交点,当C的横坐标取得最小值时,抛物线的顶点在A处,把C(-3,0),A(1,4)代入解析式,可得0=a(-3-1)2+4,求得a=-,当抛物线的顶点在B处时,D的横坐标取得最大值,其解析式y=-(x-4)2+4,易得最大值为8.故选D. 探究点二:二次函数y=a(x+h)2+k的图象的平移 将抛物线y=x2向右平移2个单位,再向下平移1个单位,所得的抛物线是(  ) A.y=(x-2)2-1 B.y=(x-2)2+1 C.y=(x+2)2+1 D.y=(x+2)2-1 解析:由“上加下减”的平移规律可知,将抛物线y=x2向下平移1个单位所得抛物线的解析式为y=x2-1;由“左加右减”的平移规律可知,将抛物线y=x2-1向右平移2个单位所得抛物线的解析式为y=(x-2)2-1.故选A. 探究点三:二次函数y=a(x+h)2+k的图象与几何图形的综合 如图所示,在平面直角坐标系xOy中,抛物线y=x2向左平移1个单位,再向下平移4个单位,得到抛物线y=(x-h)2+k.所得抛物线与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D. (1)求h,k的值; (2)判断△ACD的形状,并说明理由. 解析:(1)按照图象平移规律“左加右减,上加下减”可得到平移后的二次函数的解析式; (2)分别过点D作x轴和y轴的垂线段DE,DF,再利用勾股定理,可说明△ACD是直角三角形. 解:(1)∵将抛物线y=x2向左平移1个单位,再向下平移4个单位,得到抛物线y=(x+1)2-4,∴h=-1,k=-4; (2)△ACD为直角三角形.理由如下:由(1)得y=(x+1)2-4.当y=0时,(x+1)2-4=0,x=-3或x=1.∴A(-3,0),B(1,0).当x=0时,y=(x+1)2-4=(0+1)2-4=-3,∴C点坐标为(0,-3).顶点坐标为D(-1,-4).作出抛物线的对称轴x=-1交x轴于点E,作DF⊥y轴于点F,如图所示.在Rt△AED中,AD2=22+42=20;在Rt△AOC中,AC2=32+32=18;在Rt△CFD中,CD2=12+12=2.∵AC2+CD2=AD2,∴△ACD是直角三角形. 三、板书设计 教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y=a(x+h)2+k的图象与性质,体会数学建模的数形结合思想方法.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服