1、41.2点、线、面、体1经历探索空间点、线、面、体之间的内在联系的过程,进一步认识点、线、面、体;(重点)2探索点、线、面、体的关系,初步掌握点动成线、线动成面、面动成体(难点)一、情境导入圣诞节快要到了,圣诞老人为我们准备了一棵特殊的圣诞树,树上结满了象征吉祥的各种礼物,这些礼物的形状,从数学角度可以看作几何图形你从这些礼物中可以看出哪些几何图形?你们想不想摘取那些吉祥的礼物?那么,我们首先要真正了解它们,本节课我们来学习图形构成的元素以及它们之间的关系二、合作探究探究点一:图形构成的元素 观察图,回答下列问题:(1)图是由几个面组成的,这些面有什么特征?(2)图是由几个面组成的,这些面有什
2、么特征?(3)图中共形成了多少条线?这些线都是直的吗?图呢?(4)图和图中各有几个顶点?解析:(1)根据长方体的面的特点解答;(2)根据圆锥的面的特点解答;(3)根据长方体和圆锥体线的特点解答;(4)根据长方体和圆锥体的顶点情况解答解:(1)图是由6个面组成的,这些面都是平面;(2)图是由2个面组成的,1个平面和1个曲面;(3)图中共有12条线,这些线都是直的,图中有1条线,是曲线;(4)图中有8个顶点,图中只有1个顶点方法总结:解答此类问题要联系实物的形状与面的形状作对比,然后作出判断,平面与平面相交成直线,曲面与平面相交成曲线探究点二:由平面图形旋转而成的立体图形【类型一】 判断旋转后的图
3、形形状 观察下图,把左边的图形绕着给定的直线旋转一周后可能形成的立体图形是()解析:由图形可以看出,左边的长方形的竖直的两个边与已知的直线平行,因而这两条边旋转形成两个柱形表面,因而旋转一周后可能形成的立体图形是一个管状的物体故选D.方法总结:此题考查了点、线、面、体,重在体现面动成体,需要发挥立体图形的空间想象能力及提高分析问题、解决问题的能力【类型二】 旋转后几何体的计算问题 已知柱体的体积VSh,其中S表示柱体的底面面积,h表示柱体的高现将矩形ABCD绕轴l旋转一周,则形成的几何体的体积等于()Ar2h B2r2hC3r2h D4r2h解析:柱体的体积VSh,其中S表示柱体的底面面积,h
4、表示柱体的高,现将矩形ABCD绕轴l旋转一周,柱体的底面圆环面积为:(2r)2r23r2,形成的几何体的体积等于:3r2h.故选C.方法总结:先判断旋转后的立体图形的形状,然后利用相应的计算公式进行解答三、板书设计体由面组成,面与面相交成线,线与线相交成点点的形成:线与线相交成点,点无大小线的形成线无粗细面的形成:线动成面体的形成在本节课的教学设计中,改变以往注重知识的传授的倾向,强调学生形成积极主动的学习态度,关注学生的学习兴趣和体验数学学习活动中,应用多媒体给学生创设了生动的学习活动情景,引导学生观察生活中的美妙画面,激发学生的学习兴趣,对点、线、面、体知识有了初步的认识在学习中注重让学生主动参与学习活动,观察感受,亲身经历体验图形的变化过程,通过自主、合作、探究学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力