1、解一元一次方程-并同类项 教学目标1、会利用合并同类项解一元一次方程; 2、通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用。(3、开展探究性学习,发展学习能力)重点难点 利用合并同类项解一元一次方程是重点;列一元一次方程解决实际问题是难点。教学方法指导探究,合作交流教学资源小黑板教学过程一、问题导入约公元825年,中亚细亚数学家阿尔一花拉子米写了一本代数书,重点论述怎样解方程。这本书的拉丁文译本取名为时消与还原。“对消”与“还原”是什么意思?我们先讨论下面的问题,然后再回答这个问题。(复习提问 1叙述等式的两条性质 2解方程:4(x-)=2 解法1:根据等式性质2,两边同除以4
2、,得: x-= 两边都加,得x= 解法2:利用乘法分配律,去掉括号,得: 4x-=2 两边同加,得4x= 两边同除以4,得x=)二、探索合并同类项解一元一次方程问题 某校三年共购买计算机140台,去年购买数量是前年的两倍,今年购买数量又是去年的2倍。前年这个学校购买了多少台计算机?设前年购买计算机x台。那么去年购买计算机多少台?今年购买计算机多少台?去年购买计算机2x台,今年购买计算机4x台。问题中的相等关系是什么?前年购买量去年购买量今年购买量140台依题意,可得方程x2x4x140(为帮助有困难的学生理解,可以在上述过程中标上箭头和框图下面的框图表示了解这个方程的具体过程: x+2x+4x
3、=140 合并 7x=140 系数化为1 x=20)这个方程怎么解呢?我们知道,解方程的最终结果是要化为x=a的形式,为此可以作怎样的变形?把左边合并同类项。可得7x140系数化为1,得x20所以前年这个学校购买了20台计算机。注意:本题蕴含着一个基本的等量关系,即总量各部分量的和。(思考:上面解方程中“合并同类项”起了什么作用?它把含未知数的项合并为一项,从而向x=a的形式迈进了一步,起到了化简的作用。)三、例题例1解方程7x2.5x3x1.5x=15463解:合并同类项,得6x=78系数化1,得x=13注意:如果方程中有同类项,一定要合并同类项。(补充例题:某班学生共60分,外出参加种树活
4、动,根据任何的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数 分析:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60人分成10份,甲组人数占2份,乙组人数占3份,丙组人数占5份,如果知道每一份是多少,那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人 问:本题中相等关系是什么? 答:甲组人数乙组人数丙组人数60 解:设每一份为x人,则甲组人数为2x人,乙组人数为3x人,丙组为5x人,列方程: 2x+3x+5x=60 合并,得10x=60 系数化为1,得x=6 所以2x=12,3x=18,5x=30 答:甲组12人,乙组18人,丙组30人 请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,且这三组人数之和是否等于60)四、五分钟测试1、解下列方程:23x-5x=9 3x-25=22 0.28y-0.13y=3;(2、补充题:足球表面是由若干黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?)五、课堂小结1、合并同类项解一元一次方程。通过合并同类项把方程化为ax=b(a0,a、b是常数)的形式。从而简化方程。2、列一元一次方程解实际问题。(1)找等量关系是关键,也是难点;(2)注意抓住基本等量关系:总量各部分量的和。作业:88面1、2题。