收藏 分销(赏)

七年级数学上册 2.3绝对值教案 人教新课标版.doc

上传人:s4****5z 文档编号:7402613 上传时间:2025-01-02 格式:DOC 页数:9 大小:197.50KB
下载 相关 举报
七年级数学上册 2.3绝对值教案 人教新课标版.doc_第1页
第1页 / 共9页
七年级数学上册 2.3绝对值教案 人教新课标版.doc_第2页
第2页 / 共9页
点击查看更多>>
资源描述
一、课题 §2.3绝对值(1) 二、教学目标 1、使学生掌握有理数的绝对值概念及表示方法; 2、使学生熟练掌握有理数绝对值的求法和有关的简单计算; 3、在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的概括能力 三、教学重点和难点 正确理解绝对值的概念 四、教学手段 现代课堂教学手段 五、教学方法 启发式教学 六、教学过程 (一)、从学生原有的认知结构提出问题 1、下列各数中: +7,-2,,-83,0,+001,-,1,哪些是正数?哪些是负数?哪些是非负数? 2、什么叫做数轴?画一条数轴,并在数轴上标出下列各数: -3,4,0,3,-15,-4,,2 3、问题2中有哪些数互为相反数?从数轴上看,互为相反数的一对有理数有什么特点? 4、怎样表示一个数的相反数? (二)、师生共同研究形成绝对值概念 例1 两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米,为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米这样,利用有理数就可以明确表示每辆汽车在公路上的位置了 我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离)这里的5叫做+5的绝对值,4叫做-4的绝对值 例2 两位徒工分别用卷尺测量一段1米长的钢管,由于测量工具使用不当或读数不准确,甲测得的结果是101米,乙侧得的结果是098米甲测量的差额即多出的数记作+001米,乙测量的差额即减少的数记作-002米 如果不计测量结果是多出或减少,只考虑测量误差,那么他们测量的误差分别是001和002这里所说的测量误差也就是测量结果所多出来或减少了的数+001和-002和7-002的绝对值 如果请有经验的老师傅进行测量,结果恰好是1米,我们用有理数来表示测量的误差,这个数就是0(也可以记作+0或-0),自然这个差额0的绝以值是0 现在我们撇开例题的实际意义来研究有理数的绝对值,那么,有 +5的绝对值是5,在数轴上表示+5的点到原点的距离是5; -4的绝对值是4,在数轴上表示-4的点到原点的距离是4; +001的绝对值是001,在数轴上表示+001的点到原点的距离是001; -002的绝对值是002,在数轴上表示-002的点它到原点的距离是002; 0的绝对值是0,表明它到原点的距离是0 一般地,一个数a的绝对值就是数轴上表示a的点到原点的距离 为了方便,我们用一种符号来表示一个数的绝对值约定在一个数的两旁各画一条竖线来表示这个数的绝对值如 +5的绝对值记作+5,显然有+5=5; -002的绝对值记作-002,显然有-002=002; 0的绝对值记作0,也就是0=0 a的绝对值记作a,(提醒学生a可以是正数,也可以是负数或0) 例3 利用数轴求5,32,7,-2,-71,-05的绝对值 由例3学生自己归纳出: 一个正数的绝对值是它本身; 一个负数的绝对值是它的相反数; 0的绝对值是0 这也是绝对值的代数定义把绝对值的代数定义用数学符号语言如何表达? 把文字叙述语言变换成数学符号语言,这是一个比较困难的问题,教师应帮助学生完成这一步 1、用a表示一个数,如何表示a是正数,a是负数,a是0? 由有理数大小比较可以知道: a是正数:a>0;a是负数:a<0;a是0:a=0 2、怎样表示a的本身,a的相反数? a的本身是自然数还是a.a的相反数为-a. 现在可以把绝对值的代数定义表示成 如果a>0,那么=a;如果a<0,那么=-a;如果a=0,那么=0 由绝对值的代数定义,我们可以很方便地求已知数的绝对值了 例4 求8,-8,,-,0,6,-π,π-5的绝对值 (三)、课堂练习 1、下列哪些数是正数? -2,,,,-,-(-2),- 2、在括号里填写适当的数: =( ); =( ); -=( ); -=( ); =1, =0; -=-2 3、计算下列各题: |-3|+|+5|;|-3|+|-5|;|+2|-|-2|;|-3|-|-2|;|-|×|-|;|-|÷|-2|;÷|-|。 (四)、小结 指导学生阅读教材,进一步理解绝对值的代数和几何意义 七、练习设计 1、填空: (1)+3的符号是_____,绝对值是______; (2)-3的符号是_____,绝对值是______; (3)-的符号是____,绝对值是______; (4)10-5的符号是_____,绝对值是______ 2、填空: (1)符号是+号,绝对值是7的数是________; (2)符号是-号,绝对值是7的数是________; (3)符号是-号,绝对值是035的数是________; (4)符号是+号,绝对值是1的数是________; 3、(1)绝对值是的数有几个?各是什么? (2)绝对值是0的数有几个?各是什么? (3)有没有绝对值是-2的数? 4、计算: (1)|-15|-|-6|; (2)|-024|+|-506|; (3)|-3|×|-2|; (4)|+4|×|-5|; (3)|-12|÷|+2|; (6)|20|÷|-| 5、填空: (1)当a>0时,|2a|=________; (2)当a>1时,|a-1|=________; (3)当a<1时,|a-1|=________ 八、板书设计 2.3绝对值(1) (一)知识回顾 (三)例题解析 (五)课堂小结 例1、例2 (二)观察发现 (四)课堂练习 练习设计 九、教学后记 1、关于概念结构的理论,罗希提出的原型说(1975年)认为,概念主要以原型即它的最佳关例表达出来一个数的绝对值实质上是该数所对应的点到原点的距离的数值因此,我们选用了例1,它对于理解和形成绝对值概念是有益的布尔纳提出了特征表说(1979年),他主张从个体所具有的共同重要特征来说明概念,所以,这里配合例1选用了例2,意图是突出它们的共同特征,增强学生对绝对值概念的感性认识,同时还能对零的绝对值给出一个比较自然的解释 2、中学代数里,实数绝对值的形式定义是:aR, |a|= 而利用数轴将表示a的点到原点的距离作为它的一种几何解释实际上,它的几何意义反映了概念的本质,也可以作为绝对值的定义即实质定义一般在同一知识系统中不宜出现同一对象的两种不同定义,为了避免证明等价性的麻烦,通常以形式化的表述作为定义,另一种表术作为辅助性的解释,这在逻辑上可带来方便,其不足之处是形式定义较难理解 我们采用的办法是重点放在几何意义的理解上,最后再概括上升到形式定义上来这样比较符合从感性认识上升到理性认识的规律,同时使得绝对值概念的非负性具有较扎实的基础 一、课题 §2.3绝对值(2) 二、教学目标 1、使学生进一步掌握绝对值概念; 2、使学生掌握利用绝对值比较两个负数的大小; 3、注意培养学生的推时论证能力 三、教学重点和难点 负数大小比较 四、教学手段 现代课堂教学手段 五、教学方法 启发式教学 六、教学过程 (一)、从学生原有认知结构提出问题 1、计算:|+15|;|-|;|0| 2、计算:|-|;|--|. 3、比较-(-5)和-|-5|,+(-5)和+|-5|的大小 4、哪个数的绝对值等于0?等于?等于-1? 5、绝对值小于3的数有哪些?绝对值小于3的整数有哪几个? 6、a,b所表示的数如图所示,求|a|,|b|,|a+b|,|b-a| 7、若|a|+|b-1|=0,求a,b 这一组题从不同角度提出问题,以使学生进一步掌握绝对值概念 解:1、|+15|=15,|-|=,|0|=0 让学生口答这样做的依据 2、|-|=||=|,|--=-(--)。 说明:“| |”有两重作用,即绝对值和括号 3、因为-(-5)=5,-|-5|=-5,5>-5, 所以-(-5)>-|-5|。 这里需讲清一个问题,即-(-5)和-|-5|的读法,让学生熟悉,-(-5)读作-5的相反数,-|-5|读作-5绝对值的相反数 因为+(-5)=-5,+|-5|=,-5<5, 所以+(-5)<+|-5| 4、0的绝对值等于0,±的绝对值等于,没有什么数的绝对值等于-1(为什么?)用符号语言表示应为: |0|=0,|+|=|,|-|=。 这里应再次强调绝对值是数轴上的点与原点的距离,并指出距离是非负量 5、绝对值小于3的数是从-3到3中间的所有的有理数,有无数多个;但绝对值小于3的整数只有五个:-2,-1,0,1,2 用符号语言表示应为: 因为|x|<3,所以-3<x<3 如果x是整数,那么x=-2,-1,0,1,2 6、由数轴上a、b的位置可以知道a<0,b>0,且|a|<|b| 所以|a|=-a,|b|=b, |a+b|=a+b,|b-a|=b-a 7、若a+b=0,则a,b互为相反数或a,b都是0,因为绝对值非负,所以只有|a|=0,|b-1|=0,由绝对值意义得a=0,b-1=0 用符号语言表示应为: 因为|a|+|b-1|=0,所以a=0,b-1=0, 所以a=0,b=1 (二)、师生共同探索利用绝对值比较负数大小的法则 利用数轴我们已经会比较有理数的大小 由上面数轴,我们可以知道c<b<a,其中b,c都是负数,它们的绝对值哪个大?显然>引导学生得出结论: 两个负数,绝对值大的反而小 这样以后在比较负数大小时就不必每次再画数轴了 (三)、运用举例 变式练习 例1 比较-4与-|—3|的大小 例2 已知a>b>0,比较a,-a,b,-b的大小 例3 比较-与-的大小 课堂练习 1、比较下列每对数的大小: 与;|2|与;-与;与 2、比较下列每对数的大小: -与-;-与-;-与-;-与- (四)、小结 先由学生叙述比较有理数大小的两种方法——利用数轴比较大小;利用绝对值比较大小,然后教师引导学生得出:比较两个有理数的大小,实际上是由符号与绝对值两方面来确定学习了绝对值以后,就可以不必利用数轴来比较两个有理数的大小了 七、练习设计 1、判断下列各式是否正确: (1)|-01|<|-001|; (2)|- |<; (3) <; (4)>- 2、比较下列每对数的大小: (1)-与-;(2)-与-0273;(3)-与-; (4)- 与-;(5)- 与-;(6)- 与- 3、写出绝对值大于3而小于8的所有整数 4、你能说出符合下列条件的字母表示什么数吗? (1)|a|=a; (2)|a|=-a; (3)=-1; (4)a>-a; (5)|a|≥a; (6)-y>0; (7)-a<0; (8)a+b=0 5若|a+1|+|b-a|=0,求a,b 八、板书设计 2.3绝对值(2) (一)知识回顾 (三)例题解析 (五)课堂小结 例1、例2 (二)观察发现 (四)课堂练习 练习设计 九、教学后记 在传授知识的同时,一定要重视学科基本思想方法的教学关于这一点,布鲁纳有过精彩的论述他指出,掌握数学思想和方法可以使数学更容易理解和更容易记忆,更重要的是领会数学思想和方法是通向迁移大道的“光明之路”,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能培养学生的数学能力不但使数学学习变得容易,而且会使得别的学科容易学习显然,按照布鲁纳的观点,数学教学就不能就知识论知识,而是要使学生掌握数学最根本的东西,用数学思想和方法统摄具体知识,具体解决问题的方法,逐步形成和发展数学能力 为了使学生掌握必要的数学思想和方法,需要在教学中结合内容逐步渗透,而不能脱离内窬形式地传授本课中,我们有意识地突出“分类讨论”这一数学思想方法,以期使学生对此有一个初步的认识与了解
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服