收藏 分销(赏)

信号与系统试题集.doc

上传人:仙人****88 文档编号:7236215 上传时间:2024-12-28 格式:DOC 页数:80 大小:9.66MB
下载 相关 举报
信号与系统试题集.doc_第1页
第1页 / 共80页
信号与系统试题集.doc_第2页
第2页 / 共80页
信号与系统试题集.doc_第3页
第3页 / 共80页
信号与系统试题集.doc_第4页
第4页 / 共80页
信号与系统试题集.doc_第5页
第5页 / 共80页
点击查看更多>>
资源描述

1、信号与系统题目部分,(卷面共有200题,0.0分,各大题标有题量和总分)一、选择题(7小题,共0.0分)1题图中,若(0)=1,且该系统为稳定的因果系统,则该系统的冲激响应为。A、B、C、D、2已知信号xn如下图所示,则xn的偶分量是。3波形如图示,通过一截止角频率为,通带内传输值为1,相移为零的理想低通滤波器,则输出的频率分量为()A、B、C、D、4已知周期性冲激序列的傅里叶变换为,其中;又知;则的傅里叶变换为_。A、 B、 C、 D、5某线性时不变离散时间系统的单位函数响应为,则该系统是_系统。A、因果稳定 B、因果不稳定 C、非因果稳定 D、非因果不稳定6一线性系统的零输入响应为()u(

2、k), 零状态响应为,则该系统的阶数 A、肯定是二阶 B、肯定是三阶 C、至少是二阶 D、至少是三阶7已知某系统的冲激响应如图所示则当系统的阶跃响应为。A、B、C、D、二、填空题(6小题,共0.0分)1书籍离散系统的差分方程为,则系统的单位序列响应_。2已知周期矩形信号及如图所示。(1)的参数为,则谱线间隔为_kHz,带宽为_ KHZ。(2)的参数为,则谱线间隔为_kHz, 带宽为_ kHz。 (3)与的基波幅度之比为_。 (4) 基波幅度与的三次谐波幅度之比为 。3已知信号,其傅里叶变换_。4单边拉普拉斯变换,则其原函数_。5已知,则 =_6系统的数学模型为,则系统的自然频率为_。三、判断正

3、(8小题,共0.0分)1不是周期信号。( )2已知TI系统的单位冲激响应不是因果。( )3非周期信号一定是能量信号;4若是周期序列,则也是周期序列。 ( )5LI系统的单位冲激响应是不稳定的。( )6若f(t)和h(t)均为奇函数则f(t)*h(t)为偶函数。 ( )7是时不变的。8若y(t)=f(t)*h(t),则y(2t)=2f(2t)*h(2t)。 ( )四、解答题(172小题,共0.0分)1写出图所示电路的状态方程。2求下列函数的拉普拉斯变换(注意阶跃函数的跳变时间)。(1) (2)(3) (4)(5)(6)3利用信号的频域表示式(取各信号的傅里叶变换)分析题图系统码分复用的工作原理。

4、4求 的傅立叶变换 。5求图所示a、b、c、d四种波形的拉普拉斯变换。6 已知随机二元信号的l和0分别用+A和-A表示,它的自相关函数为 求: 信号的频谱密度。7已知网络函数的零、极点分布如题所示,此外写出网络函数表示式。8若反馈系统的开环系统函数表达式如下(都满足),分别画出奈奎斯特图,并求为使系统稳定的K值范围。; (2) ;9绘出下列各信号的波形(1) ;(2) 10如图(a)所示零状态系统,。求响应,并画出其波形。1112试画出差分方程描述的离散时间系统的模拟框图。13解差分方程,已知。(1)用迭代法逐次求数值解,归纳一个闭式解答。14已知,求下列信号的拉氏变换(1) (2) (3)(

5、4)(5)。15一个信号由频谱密度为的噪声和希望得到的信号所组成。求出这个合成信号的自相关函数并绘图,讨论如何用自相关函数从噪声中检测信号。16给定系统的状态方程和初始条件为用两种方法求解该系统。17用拉氏变换分析法,求下列系统的响应。(1)(2)18已知的频谱 (1)求出的频僻 (2)是否等于?求的频谱19给定系统微分方程、状态,以及激励信号分别为以下三种情况:(1)(2)(3)试判断在起始点是否发生跳变,并求状态之值。20某电路如图所示,其中c=2F,电流源,已电容上的初始电压,电感上的初始电流试求电阻R两端电压的全响应。21某离散系统的差分方程为已知,初始条件,求系统响应y(k)。22若

6、匹配滤波器输入信号为单位冲激响应为求(1)给出描述输出信号的表达式;(2)求时刻的输出(3)由以上结果证明,可利用题图的框图来实现匹配滤波器之功能。23已知离散系统的差分方程为输入信号,起始条件,求系统的完全响应y(k)。24已知系统函数。(1)画出在平面的零极点图;(2)借助平面的映射规律,利用的零极点分布特性说明此系统具有全通特性。25已知系统的差分方程为求系统的单位响应。26要求通过模推推拟滤波器设计数字低通滤波器,给定指标;截止角频率,通带内处超伏不超过,阻带内处衰减不大于,用巴特沃斯滤波器实现。(1)用冲激响应不变法需要多少阶?(2)用双线性变换法,最小需要多少阶?27对于下图所示的

7、一阶离散系统,求该系统在单位阶跃序列或复指数序列激励的响应,瞬态响应及稳态响应。28离散时间系统的差分方程为试求此系统的单位函数响应h(k)和阶跃响应g(k)。29如图所示,周期矩形信号x(t)作用于RL电路,求响应y(t)的傅立叶级数(只计算前四个频率分量)。30一频率为的高频信号被的正弦波调频。已调波的最大频偏为15,求调频指数和近似带宽。若调制信号的振幅加倍,已调波的近似带宽是多少?若调制信号的频率也加倍,其近似带宽又是多少?31说明下列对称条件对f(t)的傅立叶系数的影响(f(t)的周期为)。 (1) (2) (3) (4) 32一离散系统的单位函数响应为试画出该系统的模拟框图。33求

8、下列函数的拉普拉斯变换。(1) (2) (3)34利用微分定理求下图所示梯形脉冲的傅里叶变换,并大致画出情况下该脉冲的频谱图。35线性非时变系统的状态方程为:若初始状态,则若初始状态,则试求状态转移矩阵和系数矩阵A。36求下列信号的自相关函数(1);(2)37反馈系统的开环系统函数表达式如下,分别画出其根轨迹图。(1)(2)38已知单输入单输出系统如图所示。(1)列写系统的状态方程与输出方程;(2)求和;(3)若已知,求零输入响应。39求f(t)的傅立叶变换。40已知的频谱(1)求i(t)的频谱函数; (2)当T=8时,求i(t)的平均值、方均根值和平均值的平方; (3)若此电流通过R=1 的

9、电阻,计算消耗在电阻上的平均功率、直流功率和变流功率; (4)用帕色伐尔定理核对(3)的结果。41如图(a)所示系统,已知,的图形如图(b)所示。求。42求序列的卷积和:(2) 43给定线性时不变系统的状态方程和输出方程其中 (1)求系统的转移函数;(2)求系统的微分方程表达式;(3)检查该系统的可控性和可观性。44求下列脉冲信号的傅立叶变换。(1)(2)(3)(4)45设已知,求下列函数的拉氏变换。(1);(2)(3) 46 (1)求, (2)已知且 求岁1P,(细)。47求f(t)的频谱(包络为三角脉冲,载波为对称方波)。 48利用微分定理,求图1.60所示半波正弦脉冲及二阶导数的频谱。4

10、9已知系统函数(K为常数),求系统的频率响应,并画出,0.5两种情况下系统的幅度响应和相位响应。50绘出下列各时间函数的波形图,注意它们的区别:(1)(2)(3)(4)51求,的互相关函数。52已知图(a)所示网络的入端阻抗表示式为(1)写出以元件参数R,L,C表示的零、极点,的位置。(2)若零、极点分布如图(b)所示,此外,求R,L,C值。53绘出下列各时间函数的波形图(1)(2)(3)54如图所示网络,已知L=H,C=1F,R=,网络的输出取自电容电压,试求其阶跃响应和冲激响应。55求图示各信号的频谱F(j)56解差分方程,已知。57下图(a)所示电路,理想变压器的变比为,响应取。80信号

11、与系统题库(完整版) 共82页 第 页(1)写出电压转移函数、;(2)画出零、极点分布图,指出是否为全通网络;(3)求激励的响应。58列出图所示离散系统的差分方程,指出其阶次。59已知题图中两矩形脉冲与,且(1)画出的图形;(2)求的频谱。60已知题图(a)所示网络的入端阴抗表示式为(1)写出以元件参数R,E,C表示的零、极点的位置。(2)若零、极点分布如题图(b),此外,求R,L,C值。61试求下图所示互感电路的输出信号。假设输入信号分别为以下两种情况:(1)冲激信号;(2)阶跃信号。62已知线性非时变系统的状态转移矩阵为(1)(2)试求相应的系数矩阵A。63 判断下列函数是周期性的还是非周

12、期性的,若是周期函数,求其周期T。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 64已知线性非时变系统的状态转移矩阵为 (1) (2) 试求相应的系数矩阵A。65已知一模拟滤波器的传输数为,试分别用冲激响应不变法和双线性换法将它转换成数字滤波器的系统函数,设。66如图所示系统,。求系统的冲激响应。67求下列函数的拉普拉斯逆变换。(1) (2) (3)68求以下序列的傅里叶变换。(1) (2) (3)69求图所示锯齿脉冲的傅立叶变换。70用消元法把下列各联立方程写成只有一个变量的微分方程。 71已知半余弦脉冲(1) 将看作是门函数与周期函数的乘积,求频谱函数

13、;(2) 将与周期为2的周期性冲激序列卷积,得到半波整流波形,求半波整流信号的频谱函数。72如图所示,t=O时开关闭合接通电源,t=3s时开关闭合。若,求及73设有白噪声电压,其自相关函数为,将它加在如图所示的积分电路,求电路输出电压的自相关函数和功率谱密度。74离散时间系统如图所示,其初始状态,试用时域法求其零输入响应 75一个平稳随机过程的相关函数为求该随机过程的频谱密度。76图所示RC电路,t=0时开关K闭合,输入信号分别为以下几种情况,求输出信号。(1) (阶跃信号)(2) (指数充电信号)(3) (斜升边沿)(4) (矩形脉冲)(5) (正弦输入)(6) (锯齿脉冲)77若转移函数分

14、母多项式78化简下列两式: (1) (2)79线性系统的零状态单位阶跃响应为 (1)求斜波激励e(t)=tU(t)的响应, (2)求图所示激励响应。 80 求单位阶跃信号的频谱函数。81求题图所示锯齿脉冲与单周正弦脉冲的傅里叶变换。82已知一离散系统的组成框图如图所示,输入信号,试求(1)该系统的差分方程(2)该系统的单位函数响应h(n)(3)系统响应y(n)83在下图所示系统中,理想低通滤波器的频率特性,。(1)求系统的冲激响应;(2),求;(3),求。84通带允许起伏为3的切比雪夫滤波器:(1)求时低通原型滤波器系统函数(2)若归一化负载电阻,求低通原型电路实现。85一因果性的LT1系统,

15、其输入、输出用下列微分-积分方程表示:其中求该系统的单位冲激响应。86已知,求下列信号的拉氏变换:(1) (2) (3) (4) 。87某低通滤波器具有升余弦幅度传输特性和理想线性和相频特性,系统函数为其中求该系统的冲激响应,并与理想低通滤波器比较。88求下列各项函数所变换的初值和终值(1) (2) (3) (4)(5)89求信号的频宽(只计正频率部分);若对进行均匀冲激抽样,求奈奎斯特频率与奈奎斯特周期。90画出的库利一图基FFT流程图,输入序列按码位倒读顺序排列,输出为自然顺序排列。91已知单个梯形脉冲和单个余弦脉冲的傅里叶变换,示题图所示周期梯形信号和周期全波余弦信号的傅里叶变换和傅里叶

16、级数。92 图为一“信号采样及恢复”的原理线路,f(t)、y(t)为模拟信号,为滤波器,K为理想冲激采样器。采样时间间隔为1毫秒。今要在下面提供的5种滤波器中选用两只,分别作为 (每种滤渡器只准用一次),使输出端尽量恢复原信号。该如何选择?申述理由。 (1)高通滤波器 =2kHz; (2)低通滤波器=2kHz; (3)低通滤波器=lkHz; (4)低通滤波器=0。5kHz; (5)低通滤渡器=0.2kHz,这里为截止频率。 93对于差分方程所表示的离散系统:(1)求系统函数及单位样值响应,并说明系统的稳定性;(2)若系统的起始状态为零,如果,求系统的响应。94下图所示反馈电路,其中是受控源。(

17、1)求电压转移函数(2)k满足什么条件时系统稳定?95已知系统的状态方程为 当时, 当时, 试求矩阵指数和A。96如下图所示周期序列,周期,求97已知理想低通的系统函数表示式为,而激励信号的傅氏变换,利用时域卷积定理求响应时间函数的表示式。98设为一个随机过程的频谱密度。求它的自相关函数。99已知的频谱函数和理想抽样的奈奎斯特抽样间隔。100已知,试分别求下列信号并画出各信号的图形。(1) (2)(3) (4)(5) (6)(7) (8)(9) (10)101写出图所示离散系统的差分方程,并求系统转移函数及单位函数响应。102求下面序列的单边Z变换。(1) (2) (3) 103已知,其收敛域

18、为(1) (2) (3)试求序列f(k),并指出是左边序列,右边序列还是双边序列。104求图所示电路中,流过电阻R中的稳态电流i(t)恒为零时激励电压中的值。105求下列函数的拉普拉斯变换。(1) (2) (3)106对于线性非时变系统,已知其对单位函数序列的响应为,试求此系统的单位阶跃序列的响应。107已知系统的转移函数及初始条件,试求系统的零输入响应。(1)(2)(3)108求题图所示各网络的策动点阻抗函数,在s平面示出其零、极点分布。若激励电压为冲激函数,求其响应电流的波形。109 已知某LTI系统,当输入为时,其输出为;试画出该系统对图(a)所示f(t)输人信号的响应y(t)。110指

19、数脉冲电流作用于RC电路(如图所示),求电容两端电压。111求x(t)=t,y(t)=的互相关函数。112求图a、b所示电路的系统函数,并说明它们各为何种具体的网络函数,电路中、表示激励源,、表示电路的响应。113 对时间信号每秒抽样4500次,使抽样信号通过带宽为2600H z的理想低通滤波器来重建这,并假定滤波器在通带内有零相移和单位增益。 (1)确定输出信号; (2)计算输出信号的均方误差; (3)允许信号唯一重建的最小抽样速率是多少?114写出图示电路的频率响应,欲使该系统成为无失真传输系统,试确定和115电路如图所示(上右),求的值,以使输出电压与输入电流的波形一样(无失真),并分析

20、此时在信号的传输中有无延时.116已知某系统的转移算子 , 起始条件为,试求其零输入响应。117考虑可控且可观的两个单输入单 输出系统和,它们的状态方程和输出方程分别为 其中 ; 其中 现在考虑串联系统如下图所示(1)求串联系统的状态方程和输出方程,令(2)检查串联系统的可控性和可观性;(3)求系统和各别的转移函数及串联系统的转移函数;串联函数转移函数有无零极点相消现象?(2)的结果说明什么?118已知离散时间系统的单位函数响应,输入信号,试用卷积法求系统的输出响应y(k)。119已知一线性时不变系统在零输入条件下有当时,;当时,求状态转移矩阵。120判断以下各序列是否周期性的,如果是周期性的

21、,试确定其周期。(1) (2) 121图(a)所示零状态电路,求响应,并指出瞬态响应、稳态响应、自由响应、强迫响应。已知激励。122若在题图(上右)电路中,接入,求,指出其中的自由响应与强迫响应。123利用f(t)的对称性,定性地判断下图中各周期信号的傅立叫级数中所含有的频率分量。124已知系统函数(为常数)。(1)写出对应的差分方程;(2)画出该系统的结构图;(3)求系统的频率响应,并画出三种情况下系统幅度响应和相位响应。125系统函数求在以下两种收敛域和情况下系统的单位样值响应,并说明系统的稳定性与因果性。126已知是一个随机相位的正弦信号,其中是一个随机相位的正弦信号,且是一个在O至2的

22、范围内均匀分布的随机变量,其自相关函数为 求:随机过程X(t)的频谱密度两数。 127如图所示,系统是由几个子系统组合而成,各子系统的冲激响应分别为 (1) (2) (3) 试求总的系统冲激响应。128有一系统对激励为时的完全响应为,对激励为时的完全响应为。(1)求该系统的零输入响应;(2)系统的起始状态保持不变,求其对于激励为的完全响应。129在信号处理技术中应用的“短时傅里叶变换”有两种定义方式,假定信号源为x(t),时域窗函数为g(t),第一种定义方式;第二种定义方式为试从物理概念说明参变量的含义,并比较两种结果有何联系与区别130列写下图所示网络的状态方程和输出方程。131列写右上图(

23、a)所示格状网络的电压转移函数,画出s平面零、极点分布图,讨论它是否为全通系统。 132试根据图,写出系统的状态方程。133求下列差分方程所描述系统的传输算子及单位样值响应。(1)(2)(3)134求右上所示电路的系统函数和冲击响应,设激励信号为电压、响应信号为电压。135一个随机过程的自相关函数为求存在于X(t)中的周期分量。136下图所示系统,已知激励,初始状态。以为状态变量,以为响应。(1)写出系统的状态方程和输出方程;(2)求系统的矩阵指数函数;(3)求电容电压和电感电流;(4)求电感电压和电容电流;(5)求电路的固有频率。137解差分方程,已知用迭代法逐次求出数值解,归纳一个闭式解答

24、(对于);(2)分别求齐次解与特解,讨论此题应该如何假设特解函数式。138求、的自相关函数。,139画出的零极点图,在下列三种收敛域下,哪种情况对应左边序列、右边序列、双边序列?并求各对应序列。; ; 140描述离散的零阶积分器的差分方程为 式中T为常数。(1)试写出系统的转移函数;(2)当时,求系统的零状态响应。141设,试证:(1);(2)。142系统的输入输出关系可由二阶常系数线性差分方程描述,如果相对于输入为的响应为。(1)若系统起始为静止的,试决定此二阶差分方程。(2)若激励为求响应。143写出右上图所示系统的系统函数。以持续时间为的矩形脉冲作激励,求、和三种情况下的输出信号的波形。

25、144已知系统的转移函数及初始条件,试求系统的零输入响应. (1) (2) (3) 145用双线性变换法把变换成数字滤波器的系统函数,并求数字滤波器的单位样值响应。(设);(2)对(1)中给出的能否用冲激不变法转换成数字滤波器?为什么?146已知描述系统的差分方程表示式为试绘出此离散系统的方框图。如果,试求,指出此时有何特点,这种特点与系统的结构有何关系。147已知系统阶跃响应为,为使其响应为,求激励信号。148分别求下列函数的逆变换的初值与终值。(1) (2)149一离散系统如题图所示(1)当输入时,求和;(2)列出系统的差分方程。150设信号g(t)的傅立叶变换G()如下, 确定g(t)1

26、51利用罗斯判据判断右上图所示连续时间系统的稳定性。152已知x(n)如图(a)所示,画出的序列图。 153一个滤波器的传递函数为求它的等效噪声带宽。154如果是第n个月初向银行存款元,月息为,每月利息不取出,试用差分方程写出第月初的本利和。设元,=20元,求。若,多少?155写出右上图所示电路的状态方程。156若系统的差分方程初始条件,输入激励,求系统响应,并判别该系统是否稳定。157在图(a)所示系统中,已知,且,理想低通滤波器的,如图(b)所示。求。158利用幂级数展开法求所对应的序列。159写出题图所示网络的电压转移函数,讨论其幅频响应特性可能为何种类型。160某地质勘探测试设备给出的

27、发射信号,接收回波信号,若地层反射特性的系统函数以表示,且满足。(1)求;(2)以延时、相加、倍乘运算为基本单元,试画出系统方框图。161系统的微分方程为 若选取状态变量为, 输出取为 ,试写出系统的状态方程和输出方程。162已知系数矩阵A为(1)(2)(3) 试求矩阵A的特征根和状态转移矩阵。163 一个随机过程具有周期性样本函数,如下图所示,图中A是常数,是0与T之间均匀分布的随机变量。 求: (1)频谱密度和图形; (2)若样本函数为,重复(2)过程。164已知网络函数的极点位于处,零点在,且。此网络的阶跃响应中,包含一项为。若从0变到5,讨论相应的如何随之改变。165已知系统函数的极点

28、位于处,零点位于处,且,此系统的单位阶跃响应中,包含一项为,考虑当从0变到5,应如何改变。166已知横向数字滤波器的结构如下图所示,以为例。(1)写出差方程;(2)求系统函数;(3)求单位样值响应;(4)画出的零极点图;(5)精略画出系统的幅频响应。167用部分分式展开法,求下列象函数F(s)的原函数。(1)(2)168已知离散时间系统的状态方程和输出方程为 初始条件,试求:(1)状态方程的零输入解;(2)当时的输出响应y(k)。169求下列函数的拉氏变换,考虑能否借助于延时定理。(1)(2)170一频谱包含有直流至100Hz分量的连续时间信号持续2分钟,为便于计算机处理,对其抽样以构成离散信

29、号,求最小的理想抽样点数。171已知 (1)起始条件 (2) ,起始条件。求各系统的零输入响应。172系统矩阵方程参数如下,求系统函数矩阵及单位冲激响应、零输入响应、零状态响应和全响应。五、证明(7小题,共0.0分)1证明下表中除第1行以外的其余几条性质表 DFT的奇偶虚实性实函数实偶函数实奇函数实部为偶、虚部为奇实偶函数虚奇函数虚函数虚偶函数虚奇函数实部为奇、虚部为偶虚偶函数实奇函数2试证明题图所示系统可以产生单边带信号。图中信号之频谱受限于之间,设之频谱为,写出表示式,并画出图形。3证明(n为整数)不是区间上的完备正交函数集。4证明:如果AB矩阵可交换时,即,则有。(2)设矩阵被定义为如下

30、的方阵证明(3)利用证明(4)设求5试证明(n为整数)是在区间中的正交函数集。6证明:7试证明:=信号与系统答案=答案部分,(卷面共有200题,0.0分,各大题标有题量和总分)一、选择题(7小题,共0.0分)1B2C3 B4B5C6A7C二、填空题(6小题,共0.0分)12(1)1000KHZ ,2000KHZ(2)(3)1:3(4)1:13456-1,-2三、判断正(8小题,共0.0分)1正确2正确3错误4正确5正确6正确7错误8正确四、解答题(172小题,共0.0分)12 3解A点:B点:C点:通过低通滤波器将处频谱滤出得到输出D点: 通过低通滤波器将处频谱滤出,得到输出4 56解: 信号

31、的频谱密度为 若求 ,其中 ,则 。的波形如图所示。7解8解 设反馈系统的闭环转移函数为,其分母多项式用表示,即。在在平面中没轴由变到时,按照,可在平面中做出相应的复轨迹,此复轨迹是平面中轴映于平面的曲线,称之为奈奎斯特图。奈奎斯特判据:若在右半平面内有个零点和个极点,则当由变到时,在平面中的奈奎斯特图顺时针方向围绕点次;若,则按逆时针围绕点次。为判断系统是否稳定,需考察系统函数分母多项式在右半平面是否有零点,利用上述奈奎斯特图的方法,还需了解在右半平面的极点情况,事情比较麻烦。然而在一般情况下,系统未接入反馈时,也即开环特性是稳定的,这时没有极点在右半平面,随之,也没有极点在右半平面,即,于

32、是可得出在开环特性稳定条件下的奈奎斯特图顺时针绕()点之次数等于系统函数分母在右半平面内的零点数即系统函数的极点数。此奈奎斯特图若不包围,则系统稳定,否则系统不稳定。(1) 开环频响特性表达式为当时,位于正实轴上B点,即,即为此点对应的模量,其幅角为0。随着增大,减小,幅角负向增加,即曲线在实轴下边向左旋转。当,幅角为即轨迹止于O点。由此可作出由0变到对应的奈奎斯特力,为实轴下边部分。由对称性可作出当从0变到时的奈奎斯特图为实轴上边部分,由奈奎斯特图可知,在满足之条件下,轨迹不可能包围()点,因此系统稳定。(2)开环频响特性表达式为幅频特性:相频特性:当时,位于正实轴上。随着增大,减小,幅角负

33、向增加,当时,辐角为,模量,即轨迹交于虚轴的C点。当时,模量,幅角为,即轨迹止于O点。再由对称性可画出,当由变到时的奈奎斯特图如图。由图可知,在满足之条件下,轨迹不可能包围点,因此系统稳定。9解(1)设则 (2)10的波形如图(b)所示。11 12解:引入辅助函数,则系统的差分方程式可用以下两式等效由此二式可给出系统的模拟框图,如图所示。先由式(1)绘出图例的下半部分,再由式(2)绘出图的上半部分。13解(1) 14(1) (2) (3) (4) (5)15故为希望得到的信号。16解:本题中激励为零,求的是系统状态变量的零输入响应,可用时域法或变换域法求解,关键是求状态转移矩阵或特征矩阵。解法

34、一:拉普拉斯变换法零输入响应的拉氏变换为其中 特征矩阵故 解法二:时域法 零输入响应,状态转移矩阵可用以下两种方法求解。(1)由特征矩阵求 (2)按凯莱-哈密顿定理求 已知矩阵,由于A是方阵,按凯莱-哈密顿定理,有 (a)A的特征方程其特征值(特征根)为将特征值代入(a)式,得故 结果相同,可见按求之更为方便。17解:用拉氏变换法求解微分方程就是先对方程两边进行拉氏变换,代入初始值及激励的象函数,得到一个s域的代数方程,解此代数方程求出,再按求。(1)本题是个二阶微分方程,求的是零输入响应。将微分方程两侧取单边拉氏变换,得(2)本题是求一阶系统的全响应。故 故 18 19解:当方程右端自由项(

35、将代入微分方程右侧所得结果)包含有冲激函数及的各阶导数时,对微分方程两侧从到积分时的值不为0,就可引起、等在时刻发生跳变。当发生跳变时,可用冲激函数匹配法来求、之值,匹配的原则是使方程两端到始终保持相等。(1)将代入微分方程右端,得方程右端无冲激函数项出现,故状态到状态不跳变,。(2)将代入微分方程右端,得 (a)故从到将发生状态跳变。进一步分析:中不可能含有冲激函数,否则中将含有冲激偶,于是方程两端就不可能平衡。故只能是中含有项,而中将含有项(表示从到的相对单位跳变)。更一般情况:自由项中的最高阶导数项在方程左端必然属于的最高阶导数项。在内,设 (b)两侧从到积分一次,得 (c)以上从式(b

36、)到式(c)利用了。将式(b)、式(c)代回式(a),得比较上式对应项的系数,得故,即(3)将代入微分方程右端,得 (d)从到将发生状态跳变。在内,设 (e)则 (f) (g)式(g)表示从到无跳变。将式(e)(g)代回式(d),得比较对应项的系数,得故2021解:分别求系统的零输入响应和零状态响应。a)求零输入响应 特征方程为特征根所以根据初始条件,有解得b)求系统的单位函数响应h(k) 将系统差分方程以转移算子H(g)表示,并分解为部分分式 所以c)求零状态响应 使用卷积法直接求零状态响应 所以,系统全响应为零输入响应和零状态响应之和,即 22(1)(2)(3)与(2)相同,可以用来实现匹

37、配滤波器之功能。23解:分别求零输入响应和零状态响应分量。a)求零输入响应特征方程为特征根 所以 根据起始条件,有下列关系式解之得故b)求系统的单位函数响应h(k) 根据差分方程得出系统转移算子 所以利用卷积法直接求零状响应。d)全响应 24解(1) 的零点, 均位于单位圆外的极点均位于单位圆内(2)根据平面的映射关系,或,取,可求得s平面的零点和,极点和。零点与极点从为轴互为镜像,由互为镜像的零极点组成的系统为全通系统。离散系统与连续系统具有相信性,所以该离散系统是全通系统。25当时,差分方程即变为为了求得,可利用叠加原理,先分别求出与的响应,然后叠加即得。(1)当单独作用时,令其响应为。此

38、时差分方程为取,有因为对于因果系统必有,故由上式得故得系统的等效初始条件为差分方程的特征方程为其特征根为。故得将等效初始条件代入上式有联解得。故得单位响应或写成(2)单独作用时,令其响应为。根据线性时不变系统的移序不变性,可得或写成(3)系统的单位响应为26解(1)用冲激响应不变法; 求得:,即,最小需要阶(2)双线性变换法 求得:,即,最少需要3阶。27解 当 ; 当 ; ;两种情况下的的第一项由的极点所对应的序列是系统的瞬态响应,后一项为稳态响应。28解:设系统处于零状态,当时,y(t)就是单位函数响应h(k),此时差分方程变为 ;特征方程为;特征根 由于此时方程特解为零,故h(k)的形式

39、与齐次解相同,即 由于激励信号为两部分,所以单位函数响应也由两部分组成,即 由差分方程式(1)得的初始值;所以 又由差分方程式(2)得的初始值 所以 故 29解:x(t)去直流后是函数和奇谐函数,的周期T=2,基频。系统的传输函数 所以 响应y(t)的复振幅为 303, 40MHz; 70kHz; 80kHz31(1)只含偶次谐波的余弦或厅次谐波的正弦(2)只含偶次谐波的正统或奇次谐波的余弦(3)只含四倍于基波频率的余弦(4)只含四倍于基波频率的正弦和余弦323334解 的一阶、二阶导数的图形如图(a)、(b)所示。两边同取FT,由微分定理,有于是当时, 在情况下该脉冲的频谱如下图所示。35

40、36解(1)(2)37解 (1)此反馈系统的特征方程表达式为即 开环极点位于,根轨迹始于此点,对应,随着K值增大,根轨迹在负实轴上向左移动,当时,根轨迹趋于。在此根轨迹右边的实轴上,只有一个开环极点,即极点与零点数目总和是奇数,符合规则(4)。作出根轨迹图,如图(a)所示。(2)此反馈系统的特征方程表达式为开环极点位于,根轨迹有两条分支。两分支的起始点分别位于和与以上两极点对应,终止点与开环零点对应。即趋于无穷大。当K从0增加时两条分支都在负实轴上移动,在的区间内符合规则(4)的规定,根轨迹落于此区间。两条分支的交点可由方程确定。解此方程得,将代入特征方程得,因而两分支汇合于处,且此时,然后两条分支再上、下分开并趋向于。渐近线重心的坐标为渐近线与实轴交角为,即两条渐近线与实轴交角分别为和。综合以上分析可作出根轨迹图,如图(b)所示。38(1)即(2)故(3);故394041(1)求系统的冲激响应:因有 (1)又因有故得 (2)又因有(3)式(1)+式(3),得将式(2)代入上式,即故得。的波形如图(c)所示。(2)又有故得4243解:(1)转移函数矩阵先计算;故即转移函数可见,在求的过程中出现零、极点互相抵消情况,预示这个系统将可能呈现不可控或不可观测,但具体还需进一步分析才能确定。(2)列

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服