1、反比例函数的图象与性质(一)学情分析我任教的这个班有62名学生,男生33名,女生29名。班级学生思维活跃,少部分具有一定的学习能力和探索精神,但是大部分学生缺少刻苦钻研精神,基础薄弱,学习能力欠缺,班级成绩较低。内容分析本课是北师大版(2001年审定)教科书九年级上学期的内容。学生已经学习过一次函数的图像和性质,在相关知识的学习过程中,学生已经具备了动手列表,描点,连线的作图能力,以及通过观察图象概括函数图象的有关性质的能力.针对我班学生的心理特点和年龄特征及现有的知识水平,本节课采用激发诱导,探索交流,讲练结合三位一体的教学方式,充分体现老师的主导作用和学生的主体地位.通过设疑讨论,探索解惑
2、的过程,再加上多媒体手段的应用,最大限度的调动学生的积极性和主动性.根据学生的认知规律,在学法上,通过学生动手,动口,动脑,采用自主,合作,探究的学习方法,提高学生解决问题的能力.教学目标(一)教学知识点1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。(二)能力训练要求通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力.(三)情感与价值观要求让学生积极参与到数学学习活动中去,增强他们对数学
3、学习的好奇心和求知欲。教学重点画反比例函数图象并认识图象的特点.教学难点画反比例函数图象.教学过程第一环节 回顾交流,问题牵引回顾:1.什么叫做反比例函数;2反比例函数的定义中需要注意什么?第二环节 合作交流问题1:对于一次函数 y = kx + b ( k 0 )的性质,我们是如何研究的?问题2:对于反比例函数 y=k/x ( k是常数,k 0 ),我们能否象一次函数那样进行研究呢?第三环节 探求新知提问:你能画出的图象吗?学生动手画图,相互观摩。议一议(1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。(2)如果在列表时所选取的数值不同,那么图象的形状是否相同?(3)连接时能否连
4、成折线?为什么必须用光滑的曲线连接各点?(4)曲线的发展趋势如何?学生先分六人小组进行讨论,而后小组汇报做一做作反比例函数的图象。学生动手画图,相互观摩。想一想观察和的图象,它们有什么相同点和不同点?学生小组讨论,弄清上述两个图象的异同点第四环节 归纳与概括学生归纳总结,老师补充反比例函数 y = 有下列性质:反比例函数的图象y = 是由两支曲线组成的。(1)当 k0 时,两支曲线分别位于第_、_象限,(2)当 k0时反比例函数图象的共同特征,探索反比例函数的主要性质活动过程1.做做要求学生观察反比例函数y=,y=,y=的图象它们有什么共同点? 总结它们的共同特征.(1)函数图象分别位于哪几个
5、象限?(2)在每一个象限内,随着x值的增大.y的值是怎样变化的?能说明这是为什么吗?(3)反比例函数的图象可能与x轴相交吗?可能与y轴相交吗?为什么?请大家先独立思考,再互相交流得出结论.对于问题 (3),可能会有学生认为图象在逐渐接近x轴,y轴,所以当自变量取很小或很大的数时,图象能与x轴y轴相交.可以从函数式的定义域、函数与方程等角度进行解释。总结:当k0时,函数图象分别位于第一、三象限内,并且在每一个象限内,y随x的增大而减小.2.议一议用类推的方法来研究y-,y-,y=-的图象有哪些共同特征? 通过讨论,可以得出如下结论:反比例函数y的图象,当k0时,在每一象限内,y的值随x值的增大而
6、减小;当k0时,在每一象限内,y的值随x值的增大而增大.活动效果及注意事项 鼓励学生用自己的语言进行表述与交流,在交流中发展从图象中获取信息的能力.第三环节 探求新知活动目的 让学生进一步深入了解其他性质,体会代数推理的意义.活动过程3.想一想(1)在一个反比例函数图象任取两点P、Q,过点Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1;过点Q分别作x轴y轴的平行线,与坐标轴围成的矩形面积为S2,S1与S2有什么关系?为什么?(2)将反比例函数的图象绕原点旋转180后.能与原来的图象重合吗?活动效果及注意事项 通过具体操作,使学生认识到反比例函数的图象是一个以原点为中心的中心对称图形第
7、四环节 归纳与概括活动过程本节课学习了如下内容.1.反比例函数y的图象,当k0时,在第一、三象限内,在每一象限内,y的值随,值的增大而减小;当kO时,图象在第二、四象限内,y的值随x值的增大而增大. 2.在一个反比例函数图象上任取两点P,Q,分别过P,Q作x轴、y轴的平行线,与坐标轴围成的矩形面积为S1,S2,则有S1S2. 3.将反比例函数的图象绕原点旋转180后,能与原来的图形重合.即反比例函数是中心对称图形. 4.反比例函数的图象既不能与x轴相交也不能与y轴相交,但是当x的值越来越接近于0时,y的值将逐渐变得很大;反之,y的值将逐渐接近于0.因此,图象的两个分支无限接近;轴和y轴,但永远不会与x轴和y轴相交.第五环节 随堂练习随堂练习 1,2第六环节 布置作业 习题5.3 1,2四、教学反思在活动过程中,要注意提高学生的观察,分析能力和对图形的感知水平,并使学生从整体上体会研究函数的一般要求,给学生创造一个自主探索与合作交流的环境.8