资源描述
第五章 反比例函数
2.反比例函数的图象与性质(二)
河南省郑州外国语中学 杨 莉
教学过程
Ⅰ.创设问题情境,引入新课
[师]上节课我们学习了画反比例函数的图象,并通过图象总结出当k>0时,函数图象的两个分支分别位于第一、三象限内;当k<0时,函数图象的两个分支分别位于第二、四象限内.并讨论了反比例函数y=与y=-的图象的异同点.这是从函数的图象位于哪些象限来研究了反比例函数的.
我们知道在学习正比例函数和一次函数图象时,还研究了当k>0时,y的值随x的增大而增大,当k<0时,y的值随x值的增大而减小,即函数值随自变量的变化而变化的情况,以及函数图象与x轴,y轴的交点坐标.本节课我们来研究一下反比例函数的有关性质.
Ⅱ. 新课讲解
1.做—做
[师]观察反比例函数y=,y=,y=的形式,它们有什么共同点?
[生]表达式中的k都是大于零的.
[师]大家的观察能力非同一般呐! 下面再用你们的慧眼观察它们的图象,总结它们的共同特征.
投影片:(§5.2.2 A)
(1)函数图象分别位于哪几个象限?
(2)在每一个象限内,随着x值的增大.y的值是怎样变化的?能说明这是为什么吗?
(3)反比例函数的图象可能与x轴相交吗?可能与y轴相交吗?为什么?
[师]请大家先独立思考,再互相交流得出结论.
[生](1)函数图象分别位于第一、三象限内.
(2)从图象的变化趋势来看,当自变量x逐渐增大时,函数值y逐渐减小.
(3)因为图象在逐渐接近x轴,y轴,所以当自变量取很小或很大的数时,图象能与x轴y轴相交.
[师]大家同意他的观点吗?
[生]不同意(3)小的观点.
[师]能解释一下你的观点吗?
[生]从关系式y=中看,因为x≠0,所以图象与y轴不可能能有交点;因为不论x取任何实数,2是常数,y=永远也不为0,所以图象与x轴心也不可能有交点.
[师]对于(1)和(3)我不需要再说什么了,因为大家都回答的非常棒,不面我再补充—下(2).观察函数y=的图象,在第一象限我任取两点A(x1,y1),B(x2,y2),分别向x轴,y轴作垂线,找到对应的x1,x2,y1,y2,因为在坐标轴上能比较出x1与x2,y1与y2的大小,所以就可判断函数值的变化随自变址的变化是如何变化的.山图可知x1<x2,y2<y1,所以在第一象限内有y随x的增大而减小.
同理可知在其他象限内y随x的增大而如何变化.大家可以分组验证上图中的其他五种情况.
[生]情况都一样.
[师]能不能总结一下.
[生]当k>0时,函数图象分别位于第一、三象限内,并且在每一个象限内,y随x的增大而减小.
2.议一议
[师]刚才我们研究了y=,y=,y=的图象的性质,下面用类推的方法来研究y=-,y=-,y=-的图象有哪些共同特征?
投影片:(§ 5.2.2 B)
[生](1)y=-,y=-,y=-中的k都小于0,它们的图象都位于第二,四象限,所以当A<0时,反比例函数的图象位于第二、四象限内.
(2)在图象y=-中,在第二象限内任取两点A(x1,y1),B(x2,y2),可知x1>x2,y1>y2,所以可以得出当自变量逐渐减小时,函数值也逐渐减小,即函数值y随自变量x的增大而增大.
(3)这些反比例函数的图象不可能与x轴相交,也不可能与y轴相交.
[师]通过我们刚才的讨论,可以得出如下结论:
反比例函数y=的图象,当k>0时,在每一象限内,y的值随x值的增大而减小;当k<0时,在每一象限内,y的值随x值的增大而增大.
3.想一想
投影片:(§ 5.2.2 C)
(1)在一个反比例函数图象任取两点P、Q,过点Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1;过点Q分别作x轴y轴的平行线,与坐标轴围成的矩形面积为S2,S1与S2有什么关系?为什么?
(2)将反比例函数的图象绕原点旋转180°后.能与原来的图象重合吗?
[师]在下面的图象上进行探讨.
[生]设P(x1,y1),过P点分别作x轴,y轴的平行线,与两坐标轴围成的矩形面积为S1,则S1=|x1|·|y1|=|x1y1|.
∵(x1,y1)在反比例函数y=图象上,所以y1=,即x1y1=k.
∴S1=|k|.
同理可知S2=|k|,
所以S1=S2
[师]从上面的图中可以看出,P、Q两点在同一支曲线上,如果P,Q分别在不同的曲线,情况又怎样呢?
[生]S1=|x1y1|=|k|,
S2=|x2y2|=|k|.
[师]因此只要是在同一个反比例函数图象上任取两点P、Q.不管P、Q是在同一支曲线上,还是在不同的曲线上.过P、Q分别作x.轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2,则有S1=S2.
(2)将反比例函数的图象绕原点旋转180°后,能与原来的图象重合,这个问题在上节课中我们已做过研究.
Ⅲ.课堂练习
P137
Ⅳ.课时小结
本节课学习了如下内容.
1.反比例函数y=的图象,当k0时,在第一、三象限内,在每一象限内,y的值随,值的增大而减小;当k<O时,图象在第二、四象限内,y的值随x值的增大而增大.
2.在一个反比例函数图象上任取两点P,Q,分别过P,Q作x轴、y轴的平行线,与坐标轴围成的矩形面积为S1,S2,则有S1=S2.
3.将反比例函数的图象绕原点旋转180°后,能与原来的图形重合.即反比例函数是中心对称图形.
4.反比例函数的图象既不能与x轴相交也不能与y轴相交,但是当x的值越来越接近于0时,y的值将逐渐变得很大;反之,y的值将逐渐接近于0.因此,图象的两个分支无限接近;轴和y轴,但永远不会与x轴和y轴相交.
Ⅴ.课后作业
习题5.3
展开阅读全文