1、课题:8.2二元一次方程组的解法(1)【学习目标】会运用代入消元法解二元一次方程组【学习重、难点】1、会用代入法解二元一次方程组。2、灵活运用代入法的技巧【自主学习】 一、基本概念1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。我们可以先求出一个未知数,然后再求另一个未知数,。这种将未知数的个数由多化少、逐一解决的思想,叫做_。2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做_,简称_。3、代入消元法的步骤:代入消元法的第一步是:将其中
2、一个方程中的某个未知数用_的式子表示出来;第二步是:用这个式子代入_,从而消去一个未知数,化二元一次方程组为一元一次方程【合作探究】1、将方程5x-6y=12变形:若用含y的式子表示x,则x=_,当y=-2时,x=_;若用含x的式子表示y,则y=_,当x=0时,y=_ 。2、用代人法解方程组,把_代人_,可以消去未知数_,方程变为: 3、若方程y=1-x的解也是方程3x+2y=5的解,则x=_,y=_。4、若的解,则a=_,b=_。5、已知方程组的解也是方程组的解,则a=_,b=_ ,3a+2b=_。6、已知x=1和x=2都满足关于x的方程x2+px+q=0,则p=_,q=_ 。7、用代入法解
3、下列方程组: 【展示提升】 1. 若mn5(2m3n5)20,求(mn)2的值 2.已知2x2m-3n-7-3ym+3n+6=8是关于x,y的二元一次方程,求n2m【达标测评】 1、方程组的解是( )A. B. C. D.2、若2ay+5b3x与-4a2xb2-4y是同类项,则a=_,b=_。3、用代入法解下列方程组 (1)4、如果(5a-7b+3)2+=0,求a与b的值。5、若方程组与有公共的解,求a,b.6、当k=_时,方程组的解中x与y的值相等。7、已知二元一次方程3x+4y=6,当x、y互为相反数时,x=_,y=_;当x、y相等时,x=_,y= _ 。8、对于关于x、y的方程y=kx+b,k比b大1,且当x=时,y=,则k、b的值分别是( )A. B.2,1 C.-2,1 D.-1,0【教学反思】