1、章节第八章课题圆的有关概念和性质课型复习课教法讲练结合中考要求1.了解圆及其相关结论概念, 认识圆的轴对称性和中心对称性2.掌握垂径定理,圆心角、弧、弦之间相等关系定理以及圆周角和圆心角关系定理.3.进一步认识和理解研究图形性质的各种方法.中考重点掌握垂径定理,圆心角、弧、弦之间相等关系定理以及圆周角和圆心角关系定理.中考难点理解体会研究图形性质的各种方法.教学媒体学案教学过程一:【课前预习】(一):【知识梳理】 1.圆的有关概念和性质 (1) 圆的有关概念 圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧
2、称为优弧,小于半圆的弧称为劣弧弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径 (2)圆的有关性质 圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧 推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等 推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径三角形的内心和外心 :确定圆的条件:不在同一直线上的三个点确定一个圆 :三角
3、形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心 :三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心 2.与圆有关的角 (1)圆心角:顶点在圆心的角叫圆心角。圆心角的度数等于它所对的弧的度数 (2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。圆周角的度数等于它所对的弧的度数的一半 (3)圆心角与圆周角的关系: 同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半 (4)圆内接四边形:顶点都在国上的四边形,叫圆内接四边形 圆内接四边形对角
4、互补,它的一个外角等于它相邻内角的对角(二):【课前练习】 1.如图,A、B、C是O上的三点,BAC=30则BOC的大小是( ) A60 B45 C30 D152.如图,MN所在的直线垂直平分弦A B,利用这样的工具最少使用_次,就可找到圆形工件的圆心3.如图,A、B、C是O上三个点,当 BC平分ABO时,能得出结论_(任写一个)4.如图是中国共产主义青年团团旗上的图案,点A、B、C、D、E五等分圆,则A+B+C+D+E的度数是( ) A180 B15 0 C135 D1205.如图,PA、PB是O的切线,切点分别为A 、B,点C在O上如果P50 ,那么ACB等于( ) A40 B50 C65
5、 D130二:【经典考题剖析】 1.如图,在O中,已知A CBCDB60 ,AC3,则ABC的周长是_.2.“圆材埋壁”是我国古代九章算术中的问题:“今有圆材,埋在壁冲,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何”用数学语言可表述为如图,CD为O的直径,弦ABCD于点E,CE1寸,AB=10寸,则直径CD的长为( ) A125寸 B13寸 C25寸 D26寸3.如图,已知AB是半圆O的直径,弦AD和BC相交于点P,那么等于( ) AsinBPD BcosBPD CtanBPD DcotBPD4.O的半径是5,AB、CD为O的两条弦,且ABCD,AB=6,CD=8,求 AB与CD之间的距离5.如图,在M中,弧AB所对的圆心角为1200,已知圆的半径为2cm,并建立如图所示的直角坐标系,点C是y轴与弧AB的交点。(1)求圆心M的坐标;(2)若点D是弦AB所对优弧上一动点,求四边形ACBD的最大面积三:【课后训练】 1.如图,在O中,弦AB=18。m,圆周角ACB=30 ,则 O的直径等于_cm2.如图,C是O上一点,O是圆心若=35,则AOB的度数为( ) A35 B70 C105 D150 3.如图,O内接四边形ABCD中,AB=CD则图中和1相等的角有_ 四:【课后小结】布置作业教后记