1、圆的基本概念和性质 教学设计教学设计思想圆是初中几何中重要的内容之一。本节通过第一课时建立圆的概念,认识圆的轴对称性与中心对称性。讲解时将观察与思考、操作与实践等活动贯穿于教学全过程,使学生积累一定的数学活动经验。第二课时加深学生对弦、弧之间关系的认识,掌握垂径定理及其逆定理。教学时先让学生动手操作来发现结论,再通过推理的方式说明结论的正确性。数学源于生活,又服务于生活,最终要解决生活中的问题。利用现代多媒体帮助学生理解和学习数学,探索与分析,讨论与归纳等数学活动是学习的主要方式。教学目标知识与技能:1能在图形中准确识别圆、圆心、半径、直径、圆弧、半圆、等圆、等弧等;2认识圆的对称性,知道圆既
2、是轴对称图形,又是中心对称图形;3能说出等弦、等弧之间的关系,能灵活运用垂径定理及逆定理进行有关计算和证明。过程与方法:1经历抽象和建立圆的概念、探究圆的对称性及相关性质的过程,熟记圆及有关概念;2通过折叠、旋转的动手实验,多观察、探索、发现圆中圆心、弧、弦之间的关系,体会研究几何图形的各种方法;3利用圆的对称性通过折叠来发现垂径定理,充分体验探索的过程。情感态度价值观:体会“从一般到特殊”的数学思想方法及在解决问题的过程中与他人合作的重要性。教学重难点重点:(1)揭示与圆有关的本质属性;(2)垂径定理探索及其应用。难点:垂径定理探索及其应用。教学方法启发式教学教学媒体多媒体,圆规,直尺,半透
3、明纸课时安排2课时教学过程设计第一课时一、观察与思考观察汽车和皮带转动轮的视频或图片提问:车轮是什么形状的?生:圆形(问题简单,一起回答)教师又问:“为什么车轮要做成圆形呢?难道不可以做成别的形状,比方说三角、四边形等?”生:“不能!”“它们无法滚动!”出示小人骑不同轮子小车的课件师:那我们这样吧,把轮子作成椭圆的,可不可以,同时在黑板上画一椭圆。生:不行,这样一来,车子前进时,就会一忽儿高,一忽儿低。教师再进一步启发:为什么做成圆形就不会一下高,一下低呢?学生思考,同桌讨论,并回答:因为车轮上的任何一点到轴心的距离都相等的。二、大家谈谈同学们知道怎样画出一个圆么?你都有哪些方法学生畅所欲言,
4、然后老师动画演示画圆的过程,总结圆定义并板书。平面上到定点O的距离等于定长的所有点组成的图形叫做圆,定点O叫做圆心,线段OA叫做圆的半径。以O为圆心的圆,记做O,读作:圆O。几个概念:1弦和直径。利用上述图形,让学生任意连结圆上两点,就得到一条线段。指出:连结圆上任意两点的线段叫做弦。如线段CD,AB,EF,DF都叫做O的弦。(如图2)进一步指出:图中弦AB经过圆心O,我们把经过圆心的弦叫做直径。最后让学生观察,得出:直径等于半径的2倍。3弧继续观察图2,发现,连结圆上任意两个点可以得到一条弦。同时,这两个点还将圆分成两部分,我们把每一部分叫做圆弧,即:圆上任意两点间的部分叫做圆弧,简称弧。用
5、符号“”表示,如以C、D为端点的弧,记做。 继续引导学生观察会进一步发现,圆的任意一条直径的两个端点分圆成两条弧,每一条弧我们把它叫做半圆;大于半圆的弧叫做优弧,如图中的弧 ,等,小于半圆的弧叫做劣弧。如图中的 , 等。 4等圆能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。(用投影或电脑演示圆重合的过程,图3)5等弧电脑或投影演示两段弧重合的过程,指出:在同圆或等圆中,能够互相重合的弧叫做等弧。概念辨析:1直径是弦,弦是直径。这句话正确吗?(学生口答并说明理由)教师强调:直径是弦,但在一般情况下弦不是直径,只有在弦经过圆心时,这弦才叫做直径。2半圆是弧吗?弧是不是半圆?(学生口答,并说
6、明理由)教师强调:半圆是弧,但在一般情况下弧不是半圆,只有直径的两个端点分圆成的两条弧才是半圆。3长度相等的两条弧是等弧吗?为什么?(学生口答)教师强调:长度相等的弧不一定是等弧,等弧必须是在同圆或等圆中的弧。(教师用两根长度相等的铁丝,变成弧度不同的两条弧加以比较,此难点很容易被突破)三、一起探究1让学生在一张半透明的纸上以O 为圆心画一个圆,将这张纸片沿过点O的直线对折,你发现了什么?2将一个圆绕圆心旋转180后,是否与原图形重合?这能说明什么事实?学生活动:动手操作,探索圆的对称性。结论:圆是轴对称图形,过圆心的每一条直线都是它的对称轴。圆也是中心对称图形,圆心是它的对称中心。四、练习教材P3P4 练习1,2五、小结这节课我们学习了哪些主要概念?知道了圆的什么性质?在学生回答的基础上,教师强调:本节课学习了圆的有关概念。在这些概念中,要特别注意“直径和弦”、“弧和半圆”,以及“同圆、等圆和同心圆”这些概念的区别和联系。另外还要注意,等圆和等弧的概念,是建立在“能够完全重合”这一前提条件下的,它将作为今后判断两圆或两弧相等的依据。六、板书设计圆的基本概念一、圆的有关概念 二、圆的对称性 三、练习圆 弦半径 直径