收藏 分销(赏)

函数知识点MicrosoftWord文档.doc

上传人:仙人****88 文档编号:5871576 上传时间:2024-11-22 格式:DOC 页数:8 大小:218.51KB 下载积分:10 金币
下载 相关 举报
函数知识点MicrosoftWord文档.doc_第1页
第1页 / 共8页
函数知识点MicrosoftWord文档.doc_第2页
第2页 / 共8页


点击查看更多>>
资源描述
函数 知识要点 一、本章知识网络结构: 二、知识回顾: (一) 映射与函数 l 映射与一一映射 2.函数 函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 3.反函数 反函数的定义 设函数的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x=(y). 若对于y在C中的任何一个值,通过x=(y),x在A中都有唯一的值和它对应,那么,x=(y)就表示y是自变量,x是自变量y的函数,这样的函数x=(y) (yC)叫做函数的反函数,记作,习惯上改写成 (二)函数的性质 ⒈函数的单调性 定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值x1,x2, ⑴若当x1<x2时,都有f(x1)<f(x2),则说f(x)在这个区间上是增函数; ⑵若当x1<x2时,都有f(x1)>f(x2),则说f(x) 在这个区间上是减函数. 若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数. 2.函数的奇偶性 7. 奇函数,偶函数: ⑴偶函数: 设()为偶函数上一点,则()也是图象上一点. 偶函数的判定:两个条件同时满足 ①定义域一定要关于轴对称,例如:在上不是偶函数. ②满足,或,若时,. ⑵奇函数: 设()为奇函数上一点,则()也是图象上一点. 奇函数的判定:两个条件同时满足 ①定义域一定要关于原点对称,例如:在上不是奇函数. ②满足,或,若时,. 8. 对称变换:①y = f(x) ②y =f(x) ③y =f(x) 9. 判断函数单调性(定义)作差法:对带根号的一定要分子有理化,例如: 在进行讨论. 10. 外层函数的定义域是内层函数的值域. 例如:已知函数f(x)= 1+的定义域为A,函数f[f(x)]的定义域是B,则集合A与集合B之间的关系是 . 解:的值域是的定义域,的值域,故,而A,故. 11. 常用变换: ①. 证: ② 证: 12. ⑴熟悉常用函数图象: 例:→关于轴对称. →→ →关于轴对称. ⑵熟悉分式图象: 例:定义域, 值域→值域前的系数之比. (三)指数函数与对数函数 指数函数的图象和性质 a>1 0<a<1 图 象 性 质 (1)定义域:R (2)值域:(0,+∞) (3)过定点(0,1),即x=0时,y=1 (4)x>0时,y>1;x<0时,0<y<1 (4)x>0时,0<y<1;x<0时,y>1. (5)在 R上是增函数 (5)在R上是减函数 对数函数y=logax的图象和性质: 对数运算: (以上) a>1 0<a<1 图 象 性 质 (1)定义域:(0,+∞) (2)值域:R (3)过点(1,0),即当x=1时,y=0 (4)时 时 y>0 时 时 (5)在(0,+∞)上是增函数 在(0,+∞)上是减函数 注⑴:当时,. ⑵:当时,取“+”,当是偶数时且时,,而,故取“—”. 例如:中x>0而中x∈R). ⑵()与互为反函数. 当时,的值越大,越靠近轴;当时,则相反. (四)方法总结 ⑴.相同函数的判定方法:定义域相同且对应法则相同. ⑴对数运算: (以上) 注⑴:当时,. ⑵:当时,取“+”,当是偶数时且时,,而,故取“—”. 例如:中x>0而中x∈R). ⑵()与互为反函数. 当时,的值越大,越靠近轴;当时,则相反. ⑵.函数表达式的求法:①定义法;②换元法;③待定系数法. ⑶.反函数的求法:先解x,互换x、y,注明反函数的定义域(即原函数的值域). ⑷.函数的定义域的求法:布列使函数有意义的自变量的不等关系式,求解即可求得函数的定义域.常涉及到的依据为①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义等. ⑸.函数值域的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法. ⑹.单调性的判定法:①设x,x是所研究区间内任两个自变量,且x<x;②判定f(x)与f(x)的大小;③作差比较或作商比较. ⑺.奇偶性的判定法:首先考察定义域是否关于原点对称,再计算f(-x)与f(x)之间的关系:①f(-x)=f(x)为偶函数;f(-x) =-f(x)为奇函数;②f(-x)-f(x)=0为偶;f(x)+f(-x)=0为奇;③f(-x)/f(x)=1是偶;f(x)÷f(-x)=-1为奇函数. ⑻.图象的作法与平移:①据函数表达式,列表、描点、连光滑曲线;②利用熟知函数的图象的平移、翻转、伸缩变换;③利用反函数的图象与对称性描绘函数图象. - 8 -
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服