1、 平面图形的周长与面积的复习 房县东城小学 刘琼教学内容:教科书第87页例3及做一做。教学目标:1引导学生回忆整理平面图形的周长和面积的计算公式及推导过程,并能熟练的应用公式进行计算。2引导学生探索知识间的相互联系,构建知识网络,从而加深对知识的理解,并从中学习整理知识,领会学习方法。3渗透“事物之间是相互联系”的辨证唯物主义观点,“转化”等思想方法;体验数学与生活的联系,在实际生活中的运用。教学重点、难点:1. 复习计算公式及推导过程,并能熟练的应用公式进行计算。2. 探索计算公式间的内在联系,构建知识网络。教学准备:课件、学生课前准备好的平面图形的周长和面积计算公式教 学 过 程一、创设情
2、景,导入复习: 同学们,今天的课堂来了一位特殊的客人(出示图片)认识他吗?他是数学史上著名的数学家欧拉。生于1707年,是瑞士人。老师带来了欧拉小时候的故事,想听吗? 有一天,欧拉的爸爸要建造一个羊圈,他就用篱笆围出了一块长方形的地,爸爸量了量,算了算,发现羊圈的面积小了点。怎么办呢?爸爸感到很为难,因为家里的篱笆只够围这么长,没有多的了。小欧拉却对爸爸说,他有办法。 同学们猜一猜,欧拉想出了什么办法?为什么这样猜?还有别的想法吗?同学们真厉害,想出了这么多的好办法。觉这个问题,需要用到我们学过的哪一部分知识? 这节课我们就来对平面图形的周长和面积进行整理和复习。(板书课题)二、回顾整理,建构
3、网络 (一)概念复习 我们认识了哪些平面图形?什么是平面图形的周长?什么是平面图形的面积?要制作一个相框,如果想知道需要用多长的木条,实际是就相框的?如果想知道需要用多大块的玻璃,就是求? (二)梳理知识1小组交流:课前老师布置同学们整理出学过的平面图形的周长和面积计算公式,现在拿出来,小组之间相互交流一下整理情况,注意在交流的过程中要取长补短,有好的建议要互相指出来。然后推选出你们小组整理得最好的一名同学到前面来展示。2汇报展示:我们现在来交流一下你们的整理成果,哪个小组先来?其他小组要认真倾听,要注意观察他们的整理与你们的有什么不同,做好补充评价的准备。学生展示自主整理的结果哪个小组愿意来
4、补充或评价?师小结:很高兴同学们能想到这么多整理方式,其实在对学过的知识进行整理时,无论采用哪种形式,都要注重清晰、实用、内容完整。(三)回顾公式推导过程: “知其然,更要知其所以然”这些平面图形的周长和面积计算公式是如何推导出来的呢,请你选择1到2个图形,借助手中的学具,在小组中试着说说它的公式是如何推导出来的呢?1小组内回顾交流周长面积公式的推导过程2汇报交流:a 、周长公式:平行四边形等图形没有周长公式,是不是它们就没有周长?它们的周长怎么求?(其他图形的周长是把围成他们边的长度加起来就是它们的周长。)平面图形的周长计算有的有公式有的没有公式,其实不管有没有公式都是根据周长的意义求周长的
5、,公式只是周长计算的一种简捷的方法。b 、面积公式:长方形和正方形是用数格子的方法推导出的面积计算公式。沿平行四边形的一条高剪开,平移可以拼成长方形,因为长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积=底*高沿圆的半径把圆分成若干等份,然后拼成一个近似的长方形,长方形的长就是就是圆周长的一半,长方形的宽就是圆的半径,所以圆的面积=圆周率*半径的平方。两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底等于三角形的底,平行四边形的高是三角形的高,所以三角形的面积等于底乘高除以2两个完全一样的梯形拼成一个平行四边形,平行四边形的底等于梯形的上底加下底,平行四
6、边形的高就是梯形的高,所以梯形的面积等于上底和下底的和乘高除以23 课件演示:为了大家更直观的理解面积公式的推导过程,老师还准备了课件,请看大屏幕,注意看的过程中思考一个问题:这些平面图形在推导面积公式的过程是否存在联系,如果有联系,有怎样的联系。(四)构建知识网络:回答上一个问题说说你的发现?现在小组合作,试着建立知识网络图,根据这些平面图形在推导面积公式过程中存在的联系,重新排列他们的位置。1小组合作2展示交流:哪个小组先来展示?(提出要求:说清楚你们的理由)学会了计算长方形的面积后可以利用长方形面积计算的方法,推导出圆形、平行四边形、正方形的面积。学会计算平行四边形的面积后,就可以推导出
7、三角形和梯形的面积计算公式。三角形和梯形是转化成平行四边形推导出的面积计算公式,圆形和平行四边形是转化成长方形推导出的面积计算公式。正方形又是特殊的长方形,可以根据长方形的面积计算方法推导出面积计算公式。世间万物都有联系, 数学知识更是这样。看,刚才我们一起把这些零散的知识点归纳整理成一个较完整的知识体系了,其实我们梳理知识的时候就是对所学旧知进一步完善的过程。如果我们每学一部分知识都这样进行整理,就如同种下一棵知识的大树,有主干,有分支,有联系,有区别,这样,我们对知识的理解会更有条理,更系统,当然就会更深刻。(五)提炼方法,形成思想在刚才的整理和推导过程中,我们多次提到哪个词?转化是解决数
8、学问题的一个重要思想。不仅是数学上,生活中也有“转化”的影子。例如曹冲称象,就是把称大象巧妙的转化为称石头。通过转化可以将问题化难为易,化陌生为熟悉,另辟溪径寻找出解决的方法。三、重点复习、强化提高会学,还要会用,同学们会根据刚才我们一起整理出的知识做练习吗?(一)分层练习,重点突破:1.课本第97页的做一做。2.一堆钢管,横截面近似于梯形,最上层4根,最下层8根,每相邻两层相差一根,这堆钢管共有( )根。3.学校食堂的地面形状是长方形,用边长30厘米的正方形地砖铺地,需要1000块;用长50厘米、宽40厘米的长方形地砖铺地,需要多少块?3.有一个等腰三角形,顶角与一个底角的度数比是2:1,这
9、个三角形的三条边分别是1分米,1分米,1.42分米,这个三角形的面积是( )。(二)拓展延伸,整体深化:1用一长20厘米的铁丝正好围一个长方形(长、宽都是整厘米数)计算它的面积。 2小方从家到学校的距离约有2千米。一辆自行车轮胎的外直径约70厘米,小方骑这辆自行车,如果轮胎每分种转100周,他从家到学校约需几分种?(得数保留整数)3.一间房子要用方砖铺地,用边长3分米的方砖,需要96块。如果改用边长是2分米的方砖要多少块?用比例解。4.校园要建一个圆形花坛,半径10米。按1:500的比例尺,画出这个花坛。四、课堂小结: 一节快要结束了,谈谈这节课你有什么收获? 这节课我们一起整理并复习了平面图形的周长和面积,而且在整理知识的过程中,还收获了解决问题的方法,平面图形知识远不止这些,生活中的智慧更是无处不在,只要我们拥有一双善于发现的眼睛,就会时常体会到收获的快乐。