1、中考数学专题复习:二次函数与反比例函数题型1:二次函数的判定例1.下列函数中,哪些是二次函数? 分析:一般地,形如(a、b、c是常数,a0)的函数,叫做二次函数。其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项。判断函数是否是二次函数, 首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简, 然后再看自变量是否为2,最后看二次项系数是否为0这个关键条件 题型2:有关二次函数与一次函数、反比例函数的图象与系数的关系的问题.二次函数中图象与系数的关系:(1)二次项系数的正负决定开口方向,的大小决定开口的大小 a0时,开口向上,a0,图象经过第一、三象限;k0
2、,图象经过第一、二象限;b0,y随x的增大而增大;k0时,图象交于y轴正半轴, 当bO,bO,则函数y=ax2+bx的开口向上,对称轴为x=0,例2(09湖北黄石市)已知二次函数y=ax2+bx+c(a0)的图象如图所示,下列结论:abc0 2a+b0 4a2b+c0 a+c0,其中正确结论的个数为( )A、4个 B、3个 C、2个 D、1个分析:从图像的开口方向和图像与y轴交点的纵坐标可以直接得到a0.对于b,要根据抛物线的对称轴来确定.若抛物线对称轴在y轴右侧,即0,则0;所以abc0.对于2a+b,需要根据抛物线顶点横坐标与1的大小比较.观察图像可得, 1,所以2a+b0.而4a2b+c
3、是二次函数当自变量取值为2时的函数值,观察图像可发现点(2, 4a2b+c)在x轴下方,所以4a2b+c0,所以a+c0.故选答案B.【点拨】由抛物线开口方向判定的符号,由对称轴的位置判定的符号,由抛物线与轴交点位置判定的符号。由抛物线与轴的交点个数判定 的符号,若轴标出了1和1,则结合函数值可判定、的符号。例3.二次函数yax2bxc与一次函数yaxc在同一坐标系中的图象大致是()A B C D【解析】本题考查同一直角坐标系中两个函数图像的位置关系.首先通过计算可以知道这两个函数图像与y轴交于同一点(0,c),然后再采用排除法.对于A、B,直线yaxc与二次函数yax2bxc不经过同一点(0
4、,c),所以不正确.对于C、D,直线都经过第一、二、四象限,所以a0,所以抛物线开口向下.答案为D.例4. (2011四川凉山州,12,4分)二次函数的图像如图所示,反比列函数与正比列函数在同一坐标系内的大致图像是( B )例4OxyOyxAOyxBOyxDOyxC例5. (2011安徽芜湖,10,4分)二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是( D ).Oyx例6例6.(09安徽省芜湖)如图所示是二次函数图象的一部分,图象过点(3,0),二次函数图象对称轴为,给出四个结论:;,其中正确结论是( B. )ABCD【解析】本题考查利用函数图像判断代数式的符号或大小
5、问题.由抛物线开口向下能够得到a0;根据对称轴=1能够推出b+2a=0,在根据a0,所以bc0;当x=1时,y=a+b+c,根据图像可以观察到点(1,a+b+c)是抛物线的顶点,所以a+b+c0.例7(2008安徽)如图为二次函数的图象,在下列说法中:;方程的根为,;当时,随着的增大而增大正确的说法有 (请写出所有正确说法的序号)题型3:利用二次函数、反比例函数的增减性比较函数值的大小例1 若二次函数的图像开口向上,与x轴的交点为(4,0),(-2,0)知,此抛物线的对称轴为直线x=1,此时时,对应的y1 与y2的大小关系是( C )Ay1 y2 D.不确定点拨:本题可用两种解法 解法1:利用
6、二次函数的对称性以及抛物线上函数值y随x的变化规律确定:a0时,抛物线上越远离对称轴的点对应的函数值越大;ay2y3 B y2y1y3 C y2y3y1 D y3y1y2 二次函数的图象与性质附图如下:二次函数y=ax2+bx+c图象的性质。函数的图象图象特点函数性质 当aO时向上无限伸展; 当aO时开口向上; 当aO时,当x=时,y有最小值为;aO时,对称轴左侧图象从左到右下降,对称轴右侧图象从左到右上升;当aO时,当x时,y随x的增大而增大;aO时,当x时,y随x的增大而减小二次函数的图像和性质0yxO0图 象开 口 向上 向下对 称 轴x=hx=h顶点坐标(h,k)(h,k)最 值当x
7、h 时,y有最 小值当x h 时,y有最 大 值增减性在对称轴左侧即当xh时y随x的增大而增大 y随x的增大而减小 例4:在反比例函数的图像上有三点, 。若则下列各式正确的是( A)A B C D 解:用图像法,在直角坐标系中作出的图像草图,描出三个点,满足观察图像直接得到选A例5.(2008烟台)在反比例函数的图象上有两点A,B,当时,有,则的取值范围是( )A B. C. D.题型4:有关抛物线的平移问题由于抛物线的开口方向与开口大小均由二次项系数a确定,所以两个二次函数如果a相等,那么其中一个函数的图象可以由另一个函数的图象平移得到,所以形如y=ax2,y=ax2+k,y=a(xh)2+
8、k(aO,a、k、h为常数)形式的函数图象可以相互平移得到,而具体平移方式一般由各函数的顶点坐标来确定平移方式如下图:任意抛物线y=ax2+bx+c可以由抛物线y=ax2经过适当地平移得到,具体平移方法下图所示:数形结合法: 将抛物线解析式转化成顶点式,确定其顶点坐标;(抓住顶点) 保持抛物线的形状不变,将其顶点平移到处。公式法(结论法):概括成八个字“左加右减,上加下减” 沿 x轴向左(右)平移h个单位得 y=a(x+h)2+b(x+h)+c (或 y=a(x-h)2+b(x-h)+c )y=ax2沿 x轴向左(右)平移h个单位得y=a(x+h)2 (或y=a(x-h)2 )y=a(x+h)
9、2+k沿 x轴向左(右)平移m个单位得y=a(x+h+m)2+k (或y=a(x+h-m)2+k) y=ax2+bx+c 沿 y 轴向上(下)平移k个单位得 y=ax2+bx+c+k (或y=ax2+bx+c-k)y=ax2沿 y轴向上(下)平移k个单位得y=ax2 +k (或y=ax2-k)y=a(x+h)2+k沿 y轴向上(下)平移n个单位得y=a(x+h)2+n(或y=a(x+h)2+n)注:对于一般式抓住与y轴的交点或顶点,对于顶点式抓住顶点。例1、将二次函数的图象向左平移3个单位,再向下平移2个单位,求所得二次函数的解析式。 解:,将图象向左平移3个单位,再将图象向下平移2个单位,得
10、,故所求的解析式为.或例2.把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移平移2个单位,所得图象的解析式为y=x2-3x+5,求b、c的值。分析:可逆向求解,将y=x2-3x+5向左平移3个单位,再向上平移2个单位,所得抛物线即为y=x2+bx+c,进而可判断出b、c的值解:根据平移规律可知平移前原抛物线顶点坐标为 ,又知二次项系数为1。原抛物线解析式为 b=3, c=7例3已知,0,把抛物线向下平移1个单位,再向左平移5个单位所得到的新抛物线的顶点是(2,0),求原抛物线的解析式。分析:由可知:原抛物线的图像经过点(1,0);新抛物线向右平移5个单位,再向上平移1个单位即得原抛
11、物线。解:可设新抛物线的解析式为,则原抛物线的解析式为,又易知原抛物线过点(1,0),解得 原抛物线的解析式为:例4.(09鄂州市)把抛物线yax+bx+c的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是yx3x+5,则a+b+c=_17 【解析】.首先把抛物线yx3x+5化成顶点式然后把抛物线先向左平移3个单位得到再向上平移2个单位得到=x29x+25,所以a+b+c=17.题型5:求二次函数、反比例函数解析式的有关问题1. 几种特殊的二次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴)(0,0)(轴)(0, )(,0)(,)()2.二次函
12、数三种表示方法:(1)一般式:(,为常数,);(2)顶点式:(,为常数,);(3)交点式(两根式):(,是抛物线与轴两交点的横坐标)3.求二次函数解析式的方法.(1)利用待定系法求二次函数关系式时,一般先设函数关系式,然后通过解方程(组)来求待定的系数。有3种设法。顶点未知时,设一般式:() 已知顶点坐标为(h,k),设顶点式:()已知抛物线与轴两交点的坐标为(x1 ,0)与 (x2,0),设交点式()注:以下4种是以上3种的特例:已知顶点在原点,可设y=ax2 ()对称轴是y轴或顶点在y轴上,可设y=ax2+c()顶点在x轴上,可设y=a(x-h)2()抛物线过原点,可设y=ax2+bx (
13、)另外选择一般式时, 把三点或三对、的值代入外,有时通过对称轴方程或顶点坐标公式列方程.例1、已知二次函数的图象经过点A、B、C,求这个二次函数的解析式。解:设这个二次函数的解析式为,则由题意得:解得,. 故所求的二次函数的解析式为.例2、已知二次函数图象的顶点为(2,5),且与y轴的交点的纵坐标为13,求这个二次函数的解析式。解:设这个二次函数的解析式为. 它与y轴的交点为(0,13), 故所求的解析式为. 即例3、已知二次函数的图象过点(1,2),对称轴为且最小值为2,求这个函数的解析式。解:由题设知抛物线的顶点为(1,2),因此,设所求二次函数为。抛物线过点(1,2) 故所求的解析式为,
14、即。例4、已知二次函数的图象与x轴交于、两点,与y轴交点的纵坐标为2,求此二次函数的解析式。解:二次函数的图象与x轴交于、两点,故设其解析式为,又点(0,2)在图象上, 所求解析式为,即.例5 已知抛物线y=ax2bxc与x轴相交于点A(-3,0),对称轴为x=-1,顶点M到x轴的距离为2,求此抛物线的解析式解法(一):抛物线的对称轴是x=-1,顶点M到x轴距离为2,顶点的坐标为M(-1,2)或M(-1,-2)故设二次函数式y=a(x1)22或y=a(x+1)2-2又抛物线经过点A(-3,0) 0=a(-31)22或0=a(-31)2-2 解法(二):设函数解析式为y=ax2bxc 点A(-3
15、,0)在抛物线上 0=9a-3bc 又对称轴是x=-1顶点M到x轴的距离为2解由,组成的方程组:所求函数的解析式是:解法(三):抛物线的对称轴是x=-1 又图象经过点A(-3,0)点A(-3,0)关于对称轴x=-1对称的对称点A(1,0)设函数式为y=a(x+3)(x-1) 把抛物线的顶点M的坐标(-1,2)或(-1,-2)分别代入函数式,得2=a(-13)(-1-1)或-2=a(-13)(-1-1)解得例6已知,0,把抛物线向下平移1个单位,再向左平移5个单位所得到的新抛物线的顶点是(2,0),求原抛物线的解析式。分析:由可知:原抛物线的图像经过点(1,0);新抛物线向右平移5个单位,再向上
16、平移1个单位即得原抛物线。解:可设新抛物线的解析式为,则原抛物线的解析式为,又易知原抛物线过点(1,0),解得 原抛物线的解析式为:(2)根据抛物线间的关系求二次函数解析式.解这类题的关键是深刻理解平移前后两抛物线间的关系,以及所对应的解析式间的联系,并注意逆向思维的应用。另外,还可关注抛物线的顶点发生了怎样的移动,常见的几种变动方式有:开口反向(或旋转1800),此时顶点坐标不变,只是反号;两抛物线关于轴对称,此时顶点关于轴对称,反号;两抛物线关于轴对称,此时顶点关于轴对称;这类问题,必须把已知二次函数的解析式化成“顶点式”。例7、把函数的图象绕顶点旋转1800,求所得抛物线的解析式。解:,
17、所求二次函数解析式为,即.例8、把二次函数的图象沿x轴翻折,求所得抛物线的解析式。解:,抛物线沿x轴翻折后所得解析式为,故所求解析式为.(3)已知抛物线与x轴两交点间的距离求二次函数解析式当已知二次函数与x轴两交点间的距离时,常用一般式、韦达定理和关系式:例9、已知二次函数的图象x轴两交点间的距离为6,且经过点(2,2)和(4,4),求这个二次函数的解析式。解:设所求解析式为,由题设得 解这个方程,得,.所求的解析式为.例10、已知二次函数的图象与x轴两交点间的距离为2,若将图象沿y轴方向向上平移3个单位,则图象恰好经过原点,且与x轴两交点间的距离为4,求原二次函数的表达式解:新抛物线的图象恰
18、好经过原点,且与x轴两交点间的距离为4,此抛物线与x轴的交点为:(0,0),(4,0)或(4,0),设新抛物线的解析式为:y=ax2+bx(a0)当抛物线过:(0,0),(4,0)时,把x=4,y=0代入得,16a+4b=0,即b=4a,新抛物线的解析式为:y=ax24ax,原抛物线的解析式为:y=ax24ax3,设原抛物线与x轴的两交点坐标分别为(x1,0),(x2,0)则|x2x1|=2,由根与系数的关系可知,x1+x2=4,x1x2=,(x2x1)2=4,又(x2x1)2=(x2+x1)24x1x2=164()=16+ ,16+=4,解得a=1,原二次函数的解析式为:y=x2+4x3;当
19、抛物线过:(0,0),(4,0)时,把x=4,y=0代入得,16a4b=0,即b=4a,新抛物线的解析式为:y=ax2+4ax,原抛物线的解析式为:y=ax2+4ax3,同可得a=1,原二次函数的解析式为:y=x24x3故原二次函数的表达式为:y=x2+4x3或y=x24x3(4) 根据根与系数的关系求二次函数关系式。例11、 二次函数y=ax2bx-5的图象的对称轴为直线x=3,图象与y轴相交于点B,(1)求二次函数的解析式;(2)求原点O到直线AB的距离解: (1)如图, a=-1 解析式为y=-x26x-5=-(x-3)244.求反比例函数解析式(1).反比例函数解析式(k0)的确定:利
20、用待定系数法(只需一对对应值或图像上一个点的坐标即可求出)为了计算的方便通常变形成k=xy,即k等于图像上任意一个点的横坐标与纵坐标的乘积。(2). 反比例函数y(k0)中的比例系数k的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。如图,过双曲线y(k0)上的任意一点P(x , y)做x轴、y轴的垂线PA、PB,所得矩形OBPA的面积:推论:过双曲线上的任意一点做坐标轴的垂线,连接原点,所得三角形的面积为 (3)反比例函数y(k0)图象的对称性: 图象关于原点对称:即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上图象关于直线y=-x或y=x对称:
21、即若(a,b)在双曲线的一支上,则(-b,-a)或(b,a)在双曲线的另一支上例12(2011安徽)如图函数y1=k1x+b的图象与函数(x0)的图象交于A、B两点,与y轴交于C点已知A点的坐标为(2,1),C点坐标为(0,3)(1)求函数y1的表达式和B点坐标;(2)观察图象,比较当x0时,y1和y2的大小解:(1)把A(2,1)、C(0,3)代入得 解得 所以把A(2,1)代入得 所以解方程组 得 所以 点B的坐标为(1,2)6分(2)解:由图像可知,当0x1或x2时,y1y2;当1x2时,y1y2; 当x=1或x=2时,y1=y2. 12分例13、(2010安徽)点P(1,a)在反比例函
22、数y=的图象上,它关于y轴的对称点在一次函数y=2x+4的图象上,求此反比例函数的解析式分析:先求出点P(1,a)关于y轴的对称点,代入y=2x+4,求出a的值,再把P点坐标代入y=即可求出k的值解:点P(1,a)关于y轴的对称点是(1,a),2分点(1,a)在一次函数y=2x+4的图象上, a=2(1)+4=2,4分点P(1,2)在反比例函数y=的图象上,k=2, 反比例函数的解析式为为y=8分题型6:二次函数、反比例函数与一次函数综合的运用根据实际问题列二次函数关系式,并会求自变量的取值范围。用配方法或公式法把一般式或交点式化成顶点式,并能根据顶点式说出因变量随自变量变化情况(注要自变量的
23、取值范围外还一定要注意在对称轴的左右两侧二次函数的增减性是相反的),以及有关最值问题.何时取得最值及最值是多少,一般有两种方法: 配方法或公式法.运动变化思想的运用.会看函数图象.会利用图象解一元二次不等式. 要会根据图象所在的位置关系求相关的变量的取值范围(如从交点入手,看在交点的哪一边一次函数的函数值大于或小于反比例函数的函数值等)例1、(2010安徽)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售九(1)班数学建模兴趣小组根据调查,整理出第x天(1x20且x为整数)的捕捞与销售的相关信息如表:(1)在此期间该养殖
24、场每天的捕捞量与前一末的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?分析:(1)由图表中的数据可知该养殖场每天的捕捞量与前一天减少10kg;(2)根据收入=捕捞量单价捕捞成本,列出函数表达式;(3)将实际转化为求函数最值问题,从而求得最大值解:(1)该养殖场每天的捕捞量与前一天减少10kg; 2分(2)由题意,得y=20(95010x)(5)(95010x)=2x2+40x+142
25、50;7分(3)20,y=2x2+40x+14250=2(x10)2+14450,9分又1x20且x为整数,当1x10时,y随x的增大而增大;当10x20时,y随x的增大而减小;当x=10时即在第10天,y取得最大值,最大值为1445012分例2、(2011安徽压轴题)如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3(h10,h20,h30)(1)求证:h1=h3; (2)设正方形ABCD的面积为S,求证:S=(h2+h3)2+h12;(3)若,当h1变化时,说明正方形ABCD的面积为S随h1的变化情况(1)证法一:设
26、AD与的交点为E,BC与的交点为F。 四边形ABCD是正方形 BAD = BCD = 90,AB=CD,BC/AD . 则BE/DF,BF/DE, 所以四边形BEDF为平行四边形 BE=DF 在RtABE和RtCDF中,AB=CD, BE=DF RtABERtCDF 而 、分别是RtABE和RtCDF斜边上的高 4分证法二:过A点作AFl3分别交l2、l3于点E、F,过C点作CHl2分别交l2、l3于点H、G,正方形ABCD,l1l2l3l4,AB=CD,ABE=BCH,BCH=CDG,ABE=CDG,AEBCGD, ABECDG,AE=CG,即h1=h3,(2)证法一:证明:过点B、D分别作
27、的垂线段,垂足为M、N,则RtABMRtDAN BM=AN=,AM=DN=+ 在RtABM中, 又S=AB2 所以 即 9分证法二:过点D作MN交、于M、N。则RtDAMRtCDN(3)由得,代入得 又 解得0h1当0h1时,S随h1的增大而减小; 当h1=时,S取得最小值;当h1时,S随h1的增大而增大. 14分例3、(2009安徽压轴题)已知某种水果的批发单价与批发量的函数关系如图所示(1)请说明图中、两段函数图象的实际意义;(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种
28、水果;(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大O6240日最高销量(kg)80零售价(元)例3图(2)48(6,80)(7,40)例3图(1)解:(1)图表示批发量不少于20kg且不多于60kg的该种水果,可按5元/kg批发;图表示批发量高于60kg的该种水果,可按4元/kg批发 3分(2)由题意得:,函数图象如图所示 7分由图可知资金金额满足240w300时,以同样的资金可批发到较多数量的该种水果8分(3)解法一:设当日零售价为x元,由图
29、可得日最高销量 当m60时,x6.5由题意,销售利润为 12分当x6时,此时m80即经销商应批发80kg该种水果,日零售价定为6元/kg,当日可获得最大利润160元14分解法二:设日最高销售量为xkg(x60)则由图日零售价p元满足:,于是销售利润 12分当x80时,此时p6即经销商应批发80kg该种水果,日零售价定为6元/kg,当日可获得最大利润160元14分金额w(元)O批发量m(kg)300200100204060240 例4、(2008安徽)杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线的一部分,如图所示(1)求演员弹跳离地面的最大高度
30、; (7分)(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由 (5分)解:(1)= 5分 ,函数的最大值是。答:演员弹跳的最大高度是米。 7分(2)当x4时,3.4BC,所以这次表演成功。 12分例5、(2007安徽压轴题)按如图所示的流程,输入一个数据x,根据y与x的关系式就输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:()新数据都在60100(含60和100)之间;()新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的
31、对应的新数据也较大(1)若y与x的关系是y=x+p(100x),请说明:当p=时,这种变换满足上述两个要求;(6分)(2)若按关系式y=a(xh)2+k(a0)将数据进行变换,请写出一个满足上述要求的这种关系式(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)(8分)例5解:.(1)当P=时,y=x,即y=。y随着x的增大而增大,即P=时,满足条件()3分当x=20时,y=60。又当x=50时y=100。而原数据都在20100之间,所以新数据都在60100之间,即满足条件(),综上可知,当P=时,这种变换满足要求;6分(2)本题是开放性问题,答案不唯一。若所给出的关系式满足:(a)
32、h20;(b)若x=20,100时,y的对应值m,n能落在60100之间,则这样的关系式都符合要求。如取h=20,y=, 8分 a0,当20x100时,y随着x的增大 10分令x=20,y=60,得k=60 令x=100,y=100,得a802k=100 由解得, 。14分例6、(2011年广安)若二次函数,当时,y随x的增大而减小,则m的取值范围是( ) A、 B、 C、 D、例7、(2006安徽大纲卷)某公司年初推出一种高新技术产品,该产品销售的累积利润y(万元)与销售时间x(月)之间的关系(即前x个月的利润总和y与x之间的关系)为y=x22x(x0)(1)求出这个函数图象的顶点坐标和对称
33、轴; (4分)(2)请在所给坐标系中,画出这个函数图象的简图; (3分)(3)根据函数图象,你能否判断出公司的这种新产品销售累积利润 是从什么时间开始盈利的?(2分)(4)这个公司第6个月所获的利润是多少? (3分)(万元)(月)123454321例7答案图解:(1)由2分函数图象的顶点坐标为,对称轴为直线4分(2)如右图7分(3)从函数图象可以看出,从4月份开始新产品的销售累积利润盈利9分(4)时,时,这个公司第6个月所获的利润是万元12分例8、(2005安徽大纲卷)已知函数y1=x1和 (1)在所给的坐标系中画出这两个函数的图象(2)求这两个函数图象的交点坐标(3)观察图象,当x在什么范围
34、时,y1y2?分析:(1)画图的步骤:列表,描点,连线需注意函数y1的自变量取值范围是:全体实数;函数y2的自变量取值范围是:x0(2)交点都适合这两个函数解析式,应让这两个函数解析式组成方程组求解即可(3)从交点入手,看在交点的哪一边一次函数的函数值大于反比例函数的函数值解:(1)函数y1的自变量取值范围是:全体实数;函数y2的自变量取值范围是:x0列表可得:(2)联立解析式:, 解得: , 两函数的交点坐标分别为A(2,3);B(3,2);(3)由图象观察可得:当2x0或x3时,y1y2例9. (2005安徽课改卷) 如图所示,直线与x轴、y轴分别相交于A、B两点,将AOB绕点O顺时针旋转
35、90得到。(1)在图中画出; (2)求经过三点的抛物线的解析式。解:(1)如图 (2)设该抛物线的解析式为 由题意知三点的坐标分别是 解这个方程组得例10.、(2004安徽压轴题)某企业投资100万元引进一条产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万该生产线投产后,从第1年到第x年的维修、保养费用累计为y(万元),且y=ax2+bx,若第1年的维修、保养费用为2万元,第2年为4万元 (1)求y的解析式; (2)投产后,这个企业在第几年就能收回投资?解:由题意,x1时,y2;x2时,y246,分别代入yax2bx,得ab2,4a2b6,解得,a1,b1, yx2x.设g33
36、x100x2x,则gx232x100(x16)2156.由于当1x16时,g随x的增大而增大,故当x=3时g=(x16)2156=-13,当x=4时g=(x16)2156=12,故当x4时,即第4年可收回投资。例11、(2003安徽)已知函数y=x2+bx1的图象经过点(3,2)(1)求这个函数的解析式; (2)画出它的图象,并指出图象的顶点坐标; (3)当x0时,求使y2的x的取值范围解:(1)函数y=x2+bx1的图象经过点(3,2),9+3b-1=2,解得b=-2;函数解析式为y= x2-2x1(2)y= x2-2x1=(x1)22;图象如图所示, 图象的顶点坐标为(1,-2);(3)当x=3时,y=2,根据图象知,当x3时,y2;当x0时,使y2的x的取值范围是x3注:要会根据图象所在的位置关系求相关的变量的取值范围练习1、(2000安徽)(12分)已知,二次函数的图像如图。(1) 求这个二次函数的解析式和它的图像的顶点坐标;(2) (2)观察图像,回答:何时y随x的增大而增大;何时y随x的增大而减小。2(2002安徽)(12分)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y0.