1、第六章 平行四边形. 平行四边形的性质(二)西安市高新一中初中校区 邹国胜一、学生起点分析学生经历了对平行四边形性质探索的过程,掌握了平行四边形对边、对角的性质特征,并能简单应用,因此对平行四边形具有了一定的观察分析的能力和合情推理能力,具备了自行得出平行四边形对角线的性质的基础。二、学习任务分析本节的学习任务主要是进一步掌握平行四边形的性质,因此教学目标为:1进一步掌握平行四边形对角线互相平分的性质,学会应用平行四边形的性质;2在应用中进一步发展学会合情推理能力,增强学生逻辑推理能力,使学生掌握说理的基本方法。3通过解决问题,探究并归纳:“平行线间的距离处处相等”这一性质。教学重点:平行四边
2、形性质的应用教学难点:发展合情推理及逻辑推理能力教学方法:启发诱导法,探索分析法三、教学过程设计本节课分5个环节第一环节 回顾思考,引入新课第二环节 探索发现,灵活运用 第三环节 观察分析,理性升华第四环节 巩固反馈,总结提高第五环节 评价反思,目标回顾第一环节 回顾思考,引入新课活动内容:以问题串形式回顾平行四边形的概念和平行四这形的性质。温故知新。1平行四边形都有哪些性质?2回顾思考选择题(1)平行四边形ABCD中,A比B大20,则C的度数为( )A60 B80 C100 D120(2)平行四边形ABCD的周长为40cm,三角形ABC的周长为25cm, 则对角线AC长为( )A5cm B1
3、5cm C6cm D16cm(3)平行四边形ABCD中,对角线AC,BD交于O,则全等三角形的对数有 参考答案:1 C 2 A 34对 活动目的:1通过(1)(3)的问题串,反馈学生对平行四边形的对边、对角性质的理解和简单应用,同时总结结论:平行四边形对角线互相平分。活动效果: 能真实客观反馈学生对上节“平行四边形性质”的情况,并有针对性的在本节补救强化。第二环节 探索发现,灵活运用活动内容:一、 探索问题1 在上节课的做一做中,我们发现平行四边形除了边、角有特殊的关系以外,对角线还有怎样的特殊关系呢?A(学生思考、交流)得出:平行四边形的对角线互相平分。B请尝试证明这一结论已知:如图6-4,
4、平行四边形ABCD的对角线AC、BD相交于点O.求证:OA=OC,OB=OD.证明: 四边形ABCD是平行四边形 AB=CD AB/DC BAO=DCO ABO=CDO AOBCOD OA=OC,OB=OD.你还有其他的证明方法吗,与同伴交流。活动目的:通过对上节课做一做的回顾,得出平行四边形对角线互相平分的性质,再通过严格的说理证明,深化对知识的理解。活动效果及注意:因为有上节课的基础,学生对于定理的证明已具备一定的基础,但是在证明完定理后应该给学生强调:定理的证明只是让学生进一步理解定理,而在定理的运用时则没必要这么麻烦,直接由平行四边形可得出其对角线互相平分。二、练一练 活动内容探索问题
5、2 例1.如图6-5,在平行四边形ABCD中,点O是对角线AC、BD的交点,过点O的直线分别与AD、BC交于点E、F.求证:OE=OF.A议论交流B师生共析归纳解:四边形ABCD是平行四边形 AD=CB AD/BC OA=OC DAC=ACB又AOE=COFAOECOFOE=OF探索问题2 如图6-6, 平行四边形ABCD的对角线AC、BD相交于点O, ADB=900,OA=6,0B=3.求AD和AC的长度. 解: 四边形ABCD是平行四边形 OA=OC=6 OB=OD=3 AC=12 又ADB=900 在RtADO中,根据勾股定理得OA2=0D2+AD2 AD=33活动目的:通过练一练的两个
6、问题的训练,进一步巩固平行四边形的性质,并学会应用。第三环节 观察分析,理性升华例2 已知,如图,在平行四边形ABCD中,平行于对角线AC的直线MN分别交DA,DC的延长线于M,N,交BA,BC于点P,点B,你能说明MQ=NP吗?A学生独立观察分析B交流探索 C师生共析小结解:四边形ABCD是平行四边形AD/BC,AB/CD 即AM/CQ又AC/MN即AC/MQ由平行四边形定义得四边形MQCA是平行四边形MQ=AC同理 NP=ACMQ=NP小结:利用平行四边形可以证明两线段相等活动目的:由学生直观操作得出的结论与简单推理进行有机结合,是对探索活动的自然延续和必要发展,本环节让学生就用的结论进行
7、说理和推理,实验理性升华,培养语言表达能力。第四环节 巩固反馈,总结提高活动内容:一、通过练习,进一步应用平行四边形性质,达到掌握的程度。1在平行四边形ABCD中,A=150,AB=8cm,BC=10cm,求平行四边形ABCD的面积。A学生议论B师生共评解:过A作AEBC交BC于E,四边形ABCD是平行四边形AD/BC BAD+B =180BAD =150 B =30在RtABE中,B =30AE =1/2AB=4平行四边形ABCD的面积=410=40cm2小结:平行四边形的问题,可以转化为三角形,问题解决。活动目的:由学生直观操作得出的结论与简单推理进行有机结合,是对探索活动的自然延续和必要
8、发,本环节让学生应用的结论进行说理和推理实理理性升华,培养语言表达能力。二、计算题1课本随堂练习2平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。解:四边形ABCD是平行四边形AB=CD,AD=BC OA=OC,OB=OD又OA=3cm, OB=4cm, AB=5cmAC=6cm BD=8cm CD=5cmAOB中,32+42=52,即AO2+BO2=AB2AOB =90ACBDRtAOD中,OA2+OD2=AD2AD=5cm,BC=5cm,答:这个平行四边形的其它各边都是5cm,两条对角线长分别为6cm和8cm。活动效果:通过一组训练,达到了学生对平行四边形性质的掌握。第五环节 评价反思,目标回顾活动内容:1本节课你有哪些收获?你能将平行四边形的性质进行归纳吗?2本节通过实例,你如何理解“两条平行线间距离”?3利用平行四边形可以解决哪些问题?4你能给自己和同伴本节课一个评价吗?活动目的:通过师生反思评价,实理知识的系统归纳,对知识和方法进行总结,并通过作业和考题全面巩固平行四边形性质。5布置作业:习题6.2 1,2,3, 4师生共勉:把一件平凡的事情做好,就不平凡,把一件简单的事情做好就不简单。7