收藏 分销(赏)

二次函数与一元二次方程专题训练.docx

上传人:仙人****88 文档编号:5473801 上传时间:2024-11-11 格式:DOCX 页数:7 大小:187.84KB
下载 相关 举报
二次函数与一元二次方程专题训练.docx_第1页
第1页 / 共7页
二次函数与一元二次方程专题训练.docx_第2页
第2页 / 共7页
点击查看更多>>
资源描述
二次函数与一元二次方程 知识要点梳理:  一元二次方程ax2+bx+c=0(a≠0)的解的情况等价于抛物线y=ax2+bx+c(c≠0)与直线y=0(即x轴)的公共点的个数。抛物线y=ax2+bx+c(a≠0)与x轴的公共点有三种情况:两个公共点(即有两个交点),一个公共点,没有公共点,因此有:   (1)抛物线y=ax2+bx+c与x轴有两个公共点(x1,0)(x2,0)一元二次方程ax2+bx+c=0有两个不等实根△=b2-4ac>0。   (2)抛物线y=ax2+bx+c与x轴只有一个公共点时,此公共点即为顶点一元二次方程ax2+bx+c=0有两个相等实根,   (3)抛物线y=ax2+bx+c与x轴没有公共点一元二次方程ax2+bx+c=0没有实数根△=b2-4ac<0.   (4)事实上,抛物线y=ax2+bx+c与直线y=h的公共点情况方程ax2+bx+c=h的根的情况。   抛物线y=ax2+bx+c与直线y=mx+n的公共点情况方程ax2+bx+c=mx+n的根的情况。 典例精讲 例1(2008枣庄)在直角坐标平面中,O为坐标原点,二次函数的图象与y轴交于点A,与x轴的负半轴交于点B,且. (1)求点A与点B的坐标;(2)求此二次函数的解析式; (3)如果点P在x轴上,且△ABP是等腰三角形,求点P的坐标. 例2已知二次函数y=x2-〔m2+8〕x+2〔m2+6〕, ⑴求证;不论m取任何实数,此函数图象都与x轴有两个交点,且两个交点都在x轴的正半轴上。 ⑵设抛物线顶点为A,与X轴交于B,C两点,问是否存在实数M,使三角形ABC为等腰直角角形?如果存在,求出M的值;如果不存在,请说明理由。 例3(2009遂宁)如图,二次函数的图象经过点D(0,),且顶点C的横坐标为4,该图象在x 轴上截得的线段AB的长为6. ⑴求二次函数的解析式;⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标; ⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由. 基础练习 1.不论x为何值,二次函数y=ax2+bx+c的值恒为负的条件( )。 A.a>0,b2-4ac<0 B .a>0,b2-4ac>0 C. a<0,b2-4ac<0 D. a<0,b2-4ac>0 2.已知关于x的方程ax2+bx+c=0的一个根为x1=1,且二次函数y=ax2+bx+c的对称轴是直线x=2,则抛物线的顶点坐标为( )。 3.已知二次函数y=-x2+(3-k)x+2k-1的图像与y轴的交点位于(0,1)的上方,则k的取值范围( )。 4.对于每个非零自然数n,抛物线与x轴交于An、Bn两点,以表示这两点间的距离,则的值是( )。 A. B. C. D. 5.设函数y=x2﹣(k+1)x﹣4(k+5)的图象如图所示,它与x轴交于A、B两点,且线段OA与OB的长的比为1:4,则k= _________ . 6.(2010包头)已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方.下列结论:①;②;③;④.其中正确结论的个数是 个. 7. (2010自贡)y=x2+(1-a)x+1是关于x的二次函数,当x的取值范围是 1≤x≤3时,y在x=1时取得最大值,则实数a的取值范围是( )。 A.a=5 B.a≥5 C.a=3 D.a≥3 8. (2008武汉)下列命题:①若,则; ②若,则一元二次方程有两个不相等的实数根; ③若,则一元二次方程有两个不相等的实数根; ④若,则二次函数的图像与坐标轴的公共点的个数是2或3. 其中正确的是(  ). A.只有①②③B.只有①③④C.只有①④D.只有② 能力提升 1、(2011•大庆)二次函数:y=ax2﹣bx+b(a>0,b>o)图象顶点的纵坐标不大于﹣b2. (1)求该二次函数图象顶点的横坐标的取值范围; (2)若该二次函数图象与x轴交于A,B两点,求线段AB长度的最小值. 2、(2011•广东)已知抛物线y=12x2+x+c与x轴没有交点. (1)求c的取值范围; (2)试确定直线y=cx+1经过的象限,并说明理由. 3、(2011•荆州)如图,等腰梯形ABCD的底边AD在x轴上,顶点C在y轴正半轴上,B(4,2),一次函数y=kx﹣1的图象平分它的面积,关于x的函数y=mx2﹣(3m+k)x+2m+k的图象与坐标轴只有两个交点,求m的值. 4、(2011•南京)已知函数y=mx2﹣6x+1(m是常数). (1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点; (2)若该函数的图象与x轴只有一个交点,求m的值. 5、(2011•新疆)已知抛物线y=﹣x2+4x﹣3与x轴交于A、B两点(A点在B点左侧),顶点为P. (1)求A、B、P三点的坐标; (2)在直角坐标系中,用列表描点法作出抛物线的图象,并根据图象写出x取何值时,函数值大于零; (3)将此抛物线的图象向下平移一个单位,请写出平称后图象的函数表达式. x y 6、(2010•镇江)已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点. (1)求C1的顶点坐标; (2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(﹣3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标; (3)若P(n,y1),Q(2,y2)是C1上的两点,且y1>y2,求实数n的取值范围. 7、(2010•咸宁)已知二次函数y=x2+bx﹣c的图象与x轴两交点的坐标分别为(m,0),(﹣3m,0)(m≠0). (1)证明4c=3b2; (2)若该函数图象的对称轴为直线x=1,试求二次函数的最小值. 8、(2010•十堰)已知关于x的方程mx2﹣(3m﹣1)x+2m﹣2=0. (1)求证:无论m取任何实数时,方程恒有实数根; (2)若关于x的二次函数y=mx2﹣(3m﹣1)x+2m﹣2的图象与x轴两交点间的距离为2时,求抛物线的解析式; (3)在直角坐标系xoy中,画出(2)中的函数图象,结合图象回答问题:当直线y=x+b与(2)中的函数图象只有两个交点时,求b的取值范围. 9、(2010•汕头)已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3). (1)求出b,c的值,并写出此二次函数的解析式; (2)根据图象,写出函数值y为正数时,自变量x的取值范围. 10、(2010•娄底)已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其中点A的坐标是(﹣2,0),点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OC<OB)是方程x2﹣10x+24=0的两个根. (1)求B、C两点的坐标; (2)求这个二次函数的解析式. 11、(2009•肇庆)已知一元二次方程x2+px+q+1=0的一根为2. (1)求q关于p的关系式; (2)求证:抛物线y=x2+px+q与x轴有两个交点; (3)设抛物线y=x2+px+q的顶点为M,且与x轴相交于A(x1,0)、B(x2,0)两点,求使△AMB面积最小时的抛物线的解析式. 12、(2009•黔东南州)已知二次函数y=x2+ax+a﹣2. (1)求证:不论a为何实数,此函数图象与x轴总有两个交点; (2)设a<0,当此函数图象与x轴的两个交点的距离为13时,求出此二次函数的解析式; (3)若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为3132,若存在求出P点坐标,若不存在请说明理由. 15、(2009•宁夏)如图,抛物线y=﹣12x2+22x+2与x轴交于A、B两点,与y轴交于C点. (1)求A、B、C三点的坐标; (2)证明△ABC为直角三角形; (3)在抛物线上除C点外,是否还存在另外一个点P,使△ABP是直角三角形,若存在,请求出点P的坐标,若不存在,请说明理由. 16、(2008•长春)已知两个关于x的二次函数y1与y2,y1=a(x﹣k)2+2(k>0),y1+y2=x2+6x+12;当x=k时,y2=17;且二次函数y2的图象的对称轴是直线x=﹣1. (1)求k的值; (2)求函数y1,y2的表达式; (3)在同一直角坐标系内,问函数y1的图象与y2的图象是否有交点?请说明理由. 17、(2009•黄石)已知关于x的函数y=ax2+x+1(a为常数) (1)若函数的图象与x轴恰有一个交点,求a的值; (2)若函数的图象是抛物线,且顶点始终在x轴上方,求a的取值范围. 18、(2009•娄底)已知关于x的二次函数y=x2﹣(2m﹣1)x+m2+3m+4. (1)探究m满足什么条件时,二次函数y的图象与x轴的交点的个数; (2)设二次函数y的图象与x轴的交点为A(x1,0),B(x2,0),且x12+x22=5,与y轴的交点为C,它的顶点为M,求直线CM的解析式. 19、(2008•北京)已知:关于x的一元二次方程mx2﹣(3m+2)x+2m+2=0(m>0). (1)求证:方程有两个不相等的实数根; (2)设方程的两个实数根分别为x1,x2(其中x1<x2).若y是关于m的函数,且y=x2﹣2x1,求这个函数的解析式; (3)在(2)的条件下,结合函数的图象回答:当自变量m的取值范围满足什么条件时,y≤2m. 20、(2009孝感)已知抛物线(k为常数,且k>0). (1)证明:此抛物线与x轴总有两个交点; (2)设抛物线与x轴交于M、N两点,若这两点到原点的距离分别为OM、ON,且,求k的值. 21、. 已知:二次函数的图像与x轴交于A(,0)、B(,0),<0<,与y轴交于点C,且满足 ⑴ 求这个二次函数的解析式; ⑵ 是否存在着直线y=kx+b与抛物线交于点P、Q,使y轴平分△CPQ的面积?若存在,求出k、b应满足的条件;若不存在,请说明理由. 22、(2008北京).在平面直角坐标系中,抛物线与轴交于两点(点在点的左侧),与轴交于点,点的坐标为,将直线沿轴向上平移3个单位长度后恰好经过两点. (1)求直线及抛物线的解析式; (2)设抛物线的顶点为,点在抛物线的对称轴上,且,求点的坐标; 1 O y x 2 3 4 4 3 2 1 -1 -2 -2 -1 (3)连结,求与两角和的度数 23、 (2010厦门)在平面直角坐标系中,点是坐标原点,点 。连结,将线段绕点按逆时针方向旋转90°得到线段,且点是抛物线的顶点 (1)若,抛物线经过点(2,2),当时,求的取值范围; (2)已知点(1,0),若抛物线与轴交于点,直线与抛物线有且只有一个交点,请判断的形状,并说明理由 24、(2010江津)
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服