资源描述
广州市中大附中八年级上册期末数学试卷
一、选择题
1、下列关于防范“新冠肺炎”的标志中既是轴对称图形,又是中心对称图形的是( )
A.戴口罩讲卫生 B.勤洗手勤通风
C.有症状早就医 D.少出门少聚集
2、芝麻被称为“八谷之冠”,是世界上最古老的油料作物之一,它作为食品和药物,得到广泛的使用.经测算,一粒芝麻的质量约为0.00000201kg,将一粒芝麻的质量用科学记数法表示均为( )
A. B. C. D.
3、可以写为( )
A. B. C. D.
4、若代数式有意义,则实数的取值范围是( )
A. B. C. D.且
5、下列因式分解正确的是( )
A. B.
C. D.
6、若,则下列分式化简正确的是( )
A. B.
C. D.
7、如图,已知∠1=∠2,AC=AD,增加下列条件之一:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有( )
A.1个 B.2个 C.3个 D.4个
8、若关于的分式方程有增根,则的值是( )
A.-3 B.0 C.2 D.3
9、如图,点E为正方形ABCD边BC延长线上一点,且,AE交DC于点F,的度数为( )
A. B. C. D.
二、填空题
10、如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②DE长度的最小值为4;③四边形CDFE的面积保持不变;④△CDE面积的最大值为7、其中正确的结论是( )
A.①②③ B.①③ C.①③④ D.②③④
11、当x=___时,分式的值为0.
12、已知点和点关于x轴对称,则______.
13、已知非零实数x,y满足x﹣y=2且﹣=1,则x2y-xy2的值等于 _____.
14、计算:=_____.
15、如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是_____.
16、已知一个n边形的内角和等于,则n=_____
17、已知. ,,则______.
18、如图,已知在四边形中,,,,,点E为线段AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q运动______s时,能够使△BPE与以C,P,Q三点所构成的三角形全等.
三、解答题
19、因式分解:
(1);
(2)
20、(1)计算:2(x﹣y)2﹣(2x+y)(﹣y+2x);
(2)解方程:.
21、如图,点B、F、C、E在一条直线上,BF=EC,AC=DF,AC∥DF.求证:∠A=∠D.
22、如图,直线l∥线段BC,点A是直线l上一动点.在△ABC中,AD是△ABC的高线,AE是∠BAC的角平分线.
(1)如图1,若∠ABC=65°,∠BAC=80°,求∠DAE的度数;
(2)当点A在直线l上运动时,探究∠BAD,∠DAE,∠BAE之间的数量关系,并画出对应图形进行说明.
23、“双减”政策受到各地教育部门的积极响应,某校为增加学生的课外活动时间,现决定增购两种体育器材,篮球和足球.已知每个篮球的单价比每个足球的单价多25元,用840元购买篮球和用590元购买足球的数量相同.
(1)求篮球和足球的单价分别是多少元?
(2)学校决定购买两种球类共40个,若购买足球的数量不超过篮球的2倍,那么该校最多购买多少个足球?
24、一个四位数,记千位上和百位上的数字之和为,十位上和个位上的数字之和为,如果,那么称这个四位数为“和平数”.
例如:1423,,,因为,所以1423是“和平数”.
(1)直接写出:最小的“和平数”是 ,最大的“和平数”是 ;
(2)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.
例如:1423与4132为一组“相关和平数”
求证:任意的一组“相关和平数”之和是1111的倍数.
(3)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;
25、【阅读材料】小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则ABD≌ACE.
【材料理解】(1)在图1中证明小明的发现.
【深入探究】(2)如图2,ABC和AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°,其中正确的有_____.(将所有正确的序号填在横线上)
【延伸应用】(3)如图3,在四边形ABCD中,BD=CD,AB=BE,∠ABE=∠BDC=60°,试探究∠A与∠BED的数量关系,并证明.
一、选择题
1、C
【解析】C
【分析】根据轴对称图形与中心对称图形的概念求解.
【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;
B、不是轴对称图形,也不是中心对称图形,故此选项不合题意;
C、既是轴对称图形,又是中心对称图形,故此选项符合题意;
D、不是轴对称图形,也不是中心对称图形,故此选项不合题意.
故选:C.
【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
2、C
【解析】C
【分析】根据2前面有6个0得到指数为-6,表示为科学记数法即可.
【详解】解:0.00000201=2.01×10-6kg,
故选:C.
【点睛】本题考查利用科学记数法把绝对值较小的数表示为a×10-n形式,其中1≤|a|<10,解题的关键是掌握n等于原数第一个非0的数字前面0的个数.
3、D
【解析】D
【分析】根据同底数幂乘法法则,合并同类项法则依次计算判断即可.
【详解】解:A、=a10,故不符题意;
B、=2a8,不不符合题意;
C、=a8,故不符合题意;
D、=,故符合题意;
故选:D.
【点睛】此题考查了整式的乘法公式,合并同类项法则,熟记各计算法则是解题的关键.
4、B
【解析】B
【分析】根据分式有意义的条件及二次根式被开方数的非负性得到x+1≠0,,解之可得.
【详解】解:由题意得x+1≠0,,
∴x≠-1,,
∴,
故选:B.
【点睛】此题考查了分式有意义的条件及二次根式被开方数的非负性,熟练掌握各知识点并综合应用是解题的关键.
5、D
【解析】D
【分析】根据因式分解的定义和方法逐项判断即可.
【详解】解:A、不是因式分解,故此选项错误;
B、,故此选项错误;
C、,故此选项错误;
D、,正确;
故选:D.
【点睛】此题主要考查了因式分解,关键是掌握因式分解的定义和方法.
6、D
【解析】D
【分析】根据分式的基本性质(分式的分子和分母都乘以或除以一个不等于零的数,分式的值不变)求解.
【详解】解:根据分式的基本性质,分式的分子和分母都乘以或除以一个不等于零的数,分式的值不变,
A. ,分子、分母同时减2,分式值不一定不变;不符合题意;
B. ,分子、分母同时加2,分式值不一定不变;不符合题意;
C. ,分子、分母同时开方,分式值不一定不变;不符合题意;
D. ,分子、分母同时除以-2,分式值不变;符合题意;
故选:D.
【点睛】本题考查了分式的基本性质,掌握性质的本质是解题的关键.
7、C
【解析】C
【分析】先由∠1=∠2得到∠CAB=∠DAE,然后分别利用“SAS”、“ASA”和“AAS”对各添加的条件进行判断.
【详解】解:∵∠1=∠2,
∴∠CAB=∠DAE,
∵AC=AD,
∴①当AB=AE时,可根据“SAS”判断△ABC≌△AED;
②当BC=ED时,不能判断△ABC≌△AED;
③当∠C=∠D时,可根据“ASA”判断△ABC≌△AED;
④当∠B=∠E时,可根据“AAS”判断△ABC≌△AED.
故选:C.
【点睛】本题考查了全等三角形的判定:三条边分别对应相等的两个三角形全等;两边及其夹角分别对应相等的两个三角形全等;两角及其夹边分别对应相等的两个三角形全等;两角及其中一个角的对边对应相等的两个三角形全等.
8、D
【解析】D
【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m的值.
【详解】解:去分母得3x-(x-2)=m+3,
当增根为x=2时,6=m+3,
∴m=2、
故选:D.
【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
9、B
【解析】B
【分析】根据等边对等角的性质可得∠E=∠CAE,然后根据正方形的对角线平分一组对角以及三角形的一个外角等于与它不相邻的两个内角的和列式求出∠E=22.5°,再根据 三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解】解:连接AC,
∵四边形ABCD是正方形,
∴AC=BD,
∵CE=BD,
∴CE=AC,
∴∠E=∠CAE,
∵AC是正方形ABCD的对角线,
∴∠ACB=45°,
∴∠E+∠CAE=45°,
∴∠E=×45°=22.5°,
在△CEF中,∠AFC=∠E+∠ECF=22.5°+90°=112.5°.
故选:B.
【点睛】本题考查了正方形的性质,等腰三角形的性质,主要利用了正方形的对角线平分一组对角,等边对等角,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.
二、填空题
10、C
【解析】C
【分析】①连接CF,构造全等三角形,证明△ADF≌△CEF即可.
②通过①可得△DFE是等腰直角三角形,则斜边DE=DF,求得DF的最小值即可得到DE的最小值.
③通过证明△ADF≌△CEF,进行等面积代换即可得出.
④通过结论③,换角度将四边形CDFE的面积分为△CDE与△DEF,令△DEF的面积最小即可.
【详解】①连接CF.
∵△ABC为等腰直角三角形,
∴∠FCB=∠A=45°,CF=AF=FB,
∵AD=CE,
∴△ADF≌△CEF,
∴EF=DF,∠CFE=∠AFD,
∵∠AFD+∠CFD=90°
∴∠CFE+∠CFD=∠EFD=90°,
∴△EDF是等腰直角三角形,
故本选项正确;
②∵△DEF是等腰直角三角形,
∴当DE最小时,DF也最小,
即当DF⊥AC时,DE最小,此时DF=BC=4,
∴DE=DF=,
故本选项错误;
③∵△ADF≌△CEF,
∴S△CEF=S△ADF,
∴S四边形CDFE=S△DCF+S△CEF=S△DCF+S△ADF=S△ACF=S△ABC
故本选项正确;
④当△CED面积最大时,由③知,此时△DEF的面积最小,此时,
S△CED=S四边形CEFD﹣S△DEF=S△AFC﹣S△DEF=16﹣8=8,
故本选项正确;
综上所述正确的有①③④.
故选:C.
【点睛】本题旨在考查等腰直角三角形的性质,全等三角形的构造与应用,并结合动图和最值问题,熟练掌握等腰三角形的性质和全等三角形,应用数形结合的数学思维是解答关键.
11、
【分析】根据分式的意义可得到x﹣2≠0,即x≠2,根据题意分式值为0可知4x+3=0,由此求解即可.
【详解】解:∵分式的值为0,
∴,
解得,
故答案为:.
【点睛】本题考查了分式,本题的解题关键是牢记分式有意义的条件,检验分式的解是否为增根问题.
12、A
【解析】1
【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出a,b的值即可.
【详解】解:∵点A(a,3)与点B(4,b)关于x轴对称,
∴a=4,b=-3,
则a+b=4-3=1.
故答案为:1.
【点睛】此题主要考查了关于x轴对称点的坐标性质,正确记忆关于坐标轴对称的坐标性质是解题关键.
13、-4
【分析】根据已知条件式变形,求得,代入代数式求值即可求解.
【详解】解:∵x﹣y=2且﹣=1
∴,则
∴x2y-xy2 =xy(x-y)=-2×2=-3、
故答案为:-3、
【点睛】本题考查因式分解的应用,分式的性质,解题的关键是熟练运用因式分解,整体思想.
14、##
【分析】根据积的乘方运算,同底数幂的乘法的逆运算化简,进而即可求解.
【详解】解:原式=(2﹣)2021×(2+)2021×(2﹣)
=[(2﹣)×(2+)]2021×(2﹣)
=1×(2﹣)
=2﹣
故答案为:2﹣.
【点睛】此题主要考查了二次根式的混合运算,正确将原式变形是解题关键.
15、4
【分析】根据等边三角形的性质及轴对称的性质得到∠ABC=∠B=60°,B=AB=BC=2,证明△CBD≌△BD,得到CD=D,推出当A、D、三点共线时,AD+CD最小,此时AD+CD=B+AB=
【解析】4
【分析】根据等边三角形的性质及轴对称的性质得到∠ABC=∠B=60°,B=AB=BC=2,证明△CBD≌△BD,得到CD=D,推出当A、D、三点共线时,AD+CD最小,此时AD+CD=B+AB=3、
【详解】解:如图,连接D,
∵正△ABC的边长为2,△ABC与△A′BC′关于直线l对称,
∴∠ABC=∠B=60°,B=AB=BC=2,
∴∠CB=60°,
∴∠CB=∠B,
∵BD=BD,
∴△CBD≌△BD,
∴CD=D,
∴AD+CD=D+CD,
∴当A、D、三点共线时,AD+CD最小,此时AD+CD=B+AB=4,
故答案为:3、
.
【点睛】此题考查了等边三角形的性质,轴对称的性质,全等三角形的判定及性质,最短路径问题,正确掌握全等三角形的判定是解题的关键.
16、5
【分析】已知n边形的内角和为540°,根据多边形内角和的公式易求解.
【详解】解:依题意有
(n﹣2)•180°=540°,
解得n=4、
故答案为:4、
【点睛】此题主要考查的是多边形的内角和
【解析】5
【分析】已知n边形的内角和为540°,根据多边形内角和的公式易求解.
【详解】解:依题意有
(n﹣2)•180°=540°,
解得n=4、
故答案为:4、
【点睛】此题主要考查的是多边形的内角和公式,熟记多边形的内角和公式是解题的关键.
17、5
【分析】把完全平方公式展开得,,由可以求出的值.
【详解】解:,,
,,
得:,
.
故答案为:.
【点睛】本题主要考查了完全平方公式,考核学生的计算能力,熟悉公式的结构特点是解题的关键.
【解析】5
【分析】把完全平方公式展开得,,由可以求出的值.
【详解】解:,,
,,
得:,
.
故答案为:.
【点睛】本题主要考查了完全平方公式,考核学生的计算能力,熟悉公式的结构特点是解题的关键.
18、或##或
【分析】分两种情况讨论,依据全等三角形的对应边相等,即可得到点Q的运动时间.
【详解】解:设点P运动的时间为:t秒,则BP=3t,CP=8-3t,
①当BE=CP=6,BP=CQ时,△B
【解析】或##或
【分析】分两种情况讨论,依据全等三角形的对应边相等,即可得到点Q的运动时间.
【详解】解:设点P运动的时间为:t秒,则BP=3t,CP=8-3t,
①当BE=CP=6,BP=CQ时,△BPE与△CQP全等,
此时,6=8-3t,
解得,
②当BE=CQ=6,BP=CP时,△BPE与△CQP全等,
此时,3t=8-3t,
解得
综上所述,点的运动的时间为或
故答案为:或
【点睛】本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键.
三、解答题
19、(1)
(2)
【分析】(1)先提取公因式,再运用平方差公式分解因式即可;
(2)先提取公因式,再运用完全平方公式分解因式即可.
(1)
解:
;
(2)
.
【点睛】本题考查因式分解——提
【解析】(1)
(2)
【分析】(1)先提取公因式,再运用平方差公式分解因式即可;
(2)先提取公因式,再运用完全平方公式分解因式即可.
(1)
解:
;
(2)
.
【点睛】本题考查因式分解——提公因式法和公式法综合,熟练掌握因式分解的方法是解题的关键.
20、(1)
(2)原分式方程无解
【分析】(1)第一项利用完全平方差公式展开,第二项利用平方差公式展开,再去括号合并同类项.
(2)等式左右两边同时乘公分母,然后去括号,移项,合并同类项,系数化为1.
【解析】(1)
(2)原分式方程无解
【分析】(1)第一项利用完全平方差公式展开,第二项利用平方差公式展开,再去括号合并同类项.
(2)等式左右两边同时乘公分母,然后去括号,移项,合并同类项,系数化为1.
【详解】解:(1)原式
.
(2)乘公分母,得:,
去括号,得,
移项,得,
合并同类项,得,
系数化为1,得.
检验:当时,,
所以,原分式方程无解.
【点睛】(1)本题考查乘法公式的运用,熟悉掌握完全平方式、平方差公式是本题的解题关键;
(2)本题考查解分式方程,熟悉掌握解分式方程的步骤是本题的解题关键.
21、证明见解析
【分析】先由平行线的性质得 ∠ACB=∠DFE,再证 BC = EF ,然后由 SAS 证△ABC≌△DEF ,即可得出结论.
【详解】证明:∵AC∥DF,
∴∠ACB=∠DFE,
又∵
【解析】证明见解析
【分析】先由平行线的性质得 ∠ACB=∠DFE,再证 BC = EF ,然后由 SAS 证△ABC≌△DEF ,即可得出结论.
【详解】证明:∵AC∥DF,
∴∠ACB=∠DFE,
又∵BF=EC,
∴BF+FC=EC+FC,
即BC=EF,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(SAS),
∴∠A=∠D.
【点睛】本题考查了全等三角形的判定与性质以及平行线的性质,熟练掌握全等三角形的判定与性质是解题的关键.
22、(1)15°
(2)见解析
【分析】(1)根据角平分线的定义得∠BAE=∠BAC=40°.而∠BAD=90°−∠ABD=25°,利用角的和差关系可得答案;
(2)根据高在形内和形外进行分类,再根据A
【解析】(1)15°
(2)见解析
【分析】(1)根据角平分线的定义得∠BAE=∠BAC=40°.而∠BAD=90°−∠ABD=25°,利用角的和差关系可得答案;
(2)根据高在形内和形外进行分类,再根据AB,AC,AD的位置进行讨论.
(1)
解:∵AE是∠BAC的角平分线,
∴∠BAE=∠BAC=40°,
∵AD是△ABC的高线,
∴∠BDA=90°,
∴∠BAD=90°-∠ABD=25°,
∴∠DAE=∠BAE-∠BAD=40°-25°=15°.
(2)
①当点D落在线段CB的延长线时,如图所示:
此时∠BAD+∠BAE=∠DAE;
②当点D在线段BC上,且在E点的左侧时,如图所示:
此时∠BAD+∠DAE=∠BAE;
③当点D在线段BC上,且在E点的右侧时,如图所示:
此时∠BAE+∠DAE=∠BAD;
④当点D在BC的延长线上时,如图所示:
∠BAE+∠DAE=∠BAD.
【点睛】本题主要考查了角平分线的定义,三角形内角和定理等知识,运用分类讨论思想是解题的关键.
23、(1)篮球的单价为84元,足球的单价为59元
(2)26个
【分析】(1)设每个足球的单价为x元,根据“用840元购买篮球和用590元购买足球的数量相同”列分式方程,求解即可;
(2)设该校购买m个
【解析】(1)篮球的单价为84元,足球的单价为59元
(2)26个
【分析】(1)设每个足球的单价为x元,根据“用840元购买篮球和用590元购买足球的数量相同”列分式方程,求解即可;
(2)设该校购买m个足球,根据“购买足球的数量不超过篮球的2倍”列一元一次不等式,求解即可.
(1)
解:设每个足球的单价为x元,
根据题意,得:,
解得x=59,
经检验,x=59是原方程的根,且符合题意,
59+25=84(元),
答:篮球的单价为84元,足球的单价为59元;
(2)
设该校购买m个足球,
根据题意,得m≤2(40-m),
解得m≤,
m取得的最大正整数为26,
答:该校最多购买26个足球.
【点睛】本题考查了分式方程的应用,一元一次不等式的应用,理解题意并根据题意建立关系式是解题的关键.
24、(1)1001,9999;(2)见详解;(3)2754和4848
【分析】(1)根据和平数的定义,即可得到结论;
(2)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a≠0
【解析】(1)1001,9999;(2)见详解;(3)2754和4848
【分析】(1)根据和平数的定义,即可得到结论;
(2)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),于是得到=1100(a+b)+11(c+d)=1111(a+b),即可得到结论.
(3)设这个“和平数”为 ,于是得到d=2a,a+b=c+d,b+c=12k,求得2c+a=12k,
即a=2、4,6,8,d=4、8、12(舍去)、16(舍去);①、当a=2,d=4时,2(c+1)=12k,得到c=5则b=7;②、当a=4,d=8时,得到c=4则b=8,于是得到结论;
【详解】解:(1)由题意得,最小的“和平数”1001,最大的“和平数”9999,
故答案为1001,9999;
(2)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),则
=1100(a+b)+11(c+d)=1111(a+b);
即两个“相关和平数”之和是1111的倍数.
(3)设这个“和平数”为,则d=2a,a+b=c+d,b+c=12k,
∴2c+a=12k,
即a=2、4,6,8,d=4、8、12(舍去)、16(舍去),
①当a=2,d=4时,2(c+1)=12k,
可知c+1=6k且a+b=c+d,
∴c=5则b=7,
②当a=4,d=8时,
2(c+2)=12k,
可知c+2=6k且a+b=c+d,
∴c=4则b=8,
综上所述,这个数为:2754和4847、
【点睛】本题考查了因式分解的应用,正确的理解新概念和平数”是解题的关键.
25、(1)见解析;(2)①②③;(3),证明见解析
【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;
(2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形
【解析】(1)见解析;(2)①②③;(3),证明见解析
【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;
(2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论;
(3)先判断出△BDC是等边三角形,得出BD=BC,∠DBC=60°,进而判断出△ABD≌△EBC(SAS),由全等三角形的性质即可得出结论.
【详解】(1)证明:∵∠BAC=∠DAE,
∴∠BAC+∠CAD=∠DAE+∠CAD,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS);
(2)解:如图2,∵△ABC和△ADE是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS),
∴BD=CE,①正确,∠ADB=∠AEC,
记AD与CE的交点为G,
∵∠AGE=∠DGO,
∴180°−∠ADB−∠DGO=180°−∠AEC−∠AGE,
∴∠DOE=∠DAE=60°,
∴∠BOC=60°,②正确,
在OB上取一点F,使OF=OC,连接CF,
∴△OCF是等边三角形,
∴CF=OC,∠OFC=∠OCF=60°=∠ACB,
∴∠BCF=∠ACO,
∵AB=AC,
∴△BCF≌△ACO(SAS),
∴∠AOC=∠BFC=180°−∠OFC=120°,
∴∠AOE=180°−∠AOC=60°,③正确,
连接AF,要使OC=OE,则有OC=CE,
∵BD=CE,
∴CF=OF=BD,
∴OF=BF+OD,
∴BF<CF,
∴∠OBC>∠BCF,
∵∠OBC+∠BCF=∠OFC=60°,
∴∠OBC>30°,而没办法判断∠OBC大于30度,
所以,④不一定正确,
即:正确的有①②③,
故答案为①②③;
(3)∠A+∠BED=180°.
如图3,
证明:∵∠BDC=60°,BD=CD,
∴△BDC是等边三角形,
∴BD=BC,∠DBC=60°,
∵∠ABC=60°=∠DBC,
∴∠ABD=∠CBE,
∵AB=BE,
∴△ABD≌△EBC(SAS),
∴∠BEC=∠A,
∵∠BED+∠BEC=180°,
∴∠A+∠BED=180°.
【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解本题的关键.
展开阅读全文