收藏 分销(赏)

徐州市数学八年级上册期末试卷含答案.doc

上传人:天**** 文档编号:5197813 上传时间:2024-10-28 格式:DOC 页数:19 大小:1.02MB
下载 相关 举报
徐州市数学八年级上册期末试卷含答案.doc_第1页
第1页 / 共19页
徐州市数学八年级上册期末试卷含答案.doc_第2页
第2页 / 共19页
徐州市数学八年级上册期末试卷含答案.doc_第3页
第3页 / 共19页
徐州市数学八年级上册期末试卷含答案.doc_第4页
第4页 / 共19页
徐州市数学八年级上册期末试卷含答案.doc_第5页
第5页 / 共19页
点击查看更多>>
资源描述

1、徐州市数学八年级上册期末试卷含答案一、选择题1、下列不是轴对称图形的是 ()ABCD2、芝麻被称为“八谷之冠”,是世界上最古老的油料作物之一,它作为食品和药物,得到广泛的使用经测算,一粒芝麻的质量约为0.00000201kg,将一粒芝麻的质量用科学记数法表示均为()ABCD3、下列运算中,正确的是()ABCD4、若分式的值为0,则x的值为()AB2C2或D15、下列等式从左到右变形,属于因式分解的是()A2a22(a+1)B(ab)(ab)a2b2Cx22x+1(x1)2Dx2+6x+8x(x+6)+86、下列各式正确的是()ABCD7、如图,1=2,添加下列条件仍不能判定ABDACD的是()

2、A3=4BBD=CDCB=CDAB=AC8、若关于的方程有增根,则的值为()A5B0C1D29、如图,在中,在延长线上取一点,在延长线上取一点,使,延长交于,若,则的度数为()ABCD二、填空题10、如图,点P为定角AOB平分线上的一个定点,且MPN与AOB互补若MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:PM=PN;OM+ON的值不变;MN的长不变;四边形PMON的面积不变,其中,正确结论的是()ABCD11、若分式的值为0,则x_ 12、若点P(2,a)关于x轴的对称点为Q(b,1),则(a+b)3的值是 _13、已知,则的值为_14、已知,m,n为正整

3、数,则_(用含a,b的式子表示)15、如图,在平面直角坐标系xOy中,点A的坐标为(0,6),点B为x轴上一动点,以AB为边在直线AB的右侧作等边三角形ABC若点P为OA的中点,连接PC,则PC的长的最小值为_16、若为完全平方式,则m的值为_17、已知a+b5,ab6,则ab的值为 _18、如图,在ABC中,ACB=90,AC=4,BC=7、点P从点A出发,沿折线AC-CB以每秒1个单位长度的速度向终点B运动,点Q从点B出发沿折线BC-CA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发,分别过P、Q两点作PEl于E,QFl于F,当PEC与QFC全等时,PC的长为 _三、解答题19、

4、将下列各式分解因式:(1);(2)20、解下列方程:(1)(2)21、已知:如图,点A,F,C,D在同一条直线上,点B和点E在直线AD的两侧,且AFDC,BCFE,AD求证:ABDE22、在四边形ABCD中,AC90(1)求:ABC+ADC ;(2)如图,若DE平分ADC,BF平分CBM,写出DE与BF的位置关系(3)如图,若BF,DE分别平分ABC,ADC的外角,写出BF与DE的位置关系,对(2)和(3)任选一个加以证明23、商家销售甲款式帽子的单价比乙款式帽子的单价多2元,用80元购买甲款式帽子的数量与用64元购买乙款式帽子的数量相同(1)甲、乙两种款式帽子的单价各是多少元?(2)公司准备

5、从商家购买甲、乙两种款式的帽子共100顶,要求甲款式帽子的数量不能少于乙款式帽子,且不能多于乙款式帽子的公司有几种购买方案;购买时商家将甲款式帽子的单价降低m元(),乙款式帽子的单价不变,若公司购买的总费用不超过821元,求m的取值范围24、阅读下列材料,然后解答问题:问题:分解因式:.解答:把代入多项式,发现此多项式的值为0,由此确定多项式中有因式,于是可设,分别求出,的值.再代入,就容易分解多项式,这种分解因式的方法叫做“试根法”.(1)求上述式子中,的值;(2)请你用“试根法”分解因式:.25、(初步探索)(1)如图:在四边形中,、分别是、上的点,且,探究图中、之间的数量关系(1)(1)

6、小明同学探究此问题的方法是:延长到点,使连接,先证明,再证明,可得出结论,他的结论应是_;(2)(灵活运用)(2)如图2,若在四边形中,、分别是、上的点,且,上述结论是否仍然成立,并说明理由;一、选择题1、B【解析】B【分析】根据轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)逐项判断即可得【详解】解:A、是轴对称图形,则此项符合题意;B、不是轴对称图形,则此项不符合题意;C、是轴对称图形,则此项符合题意;D、是轴对称图形,则此项符合题意;故选:B【点睛】本题考查了轴对称图形,熟记轴对称图形的定义是解题关键2、C【解析】C【分析】根据2前面

7、有6个0得到指数为-6,表示为科学记数法即可【详解】解:0.00000201=2.0110-6kg,故选:C【点睛】本题考查利用科学记数法把绝对值较小的数表示为a10-n形式,其中1|a|10,解题的关键是掌握n等于原数第一个非0的数字前面0的个数3、D【解析】D【分析】根据同底数幂的乘法、幂的乘方、合并同类项法则、同底数幂的除法法则分别计算即可【详解】解:A. ,故选项错误,不符合题意;B. ,故选项错误,不符合题意;C. ,故选项错误,不符合题意;D. ,故选项正确,符合题意故选:D【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项法则、同底数幂的除法法则,熟记相关运算法则是解题关键4

8、、A【解析】A【分析】根据分式值为零且分式有意义的条件求解即可【详解】解:分式的值为0, (x+1)(x-2)=0,且x2-4x+40,解得x=-1或x=2,且x2,x=-1故选:A【点睛】此题考查了分式值为零的条件,分式有意义的条件,熟记分式的知识是解题的关键5、C【解析】C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,依据分解因式的定义进行判断即可【详解】解:A2a-2=2(a-1),故本选项不符合题意;B从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C从左到右的变形属于因式分解,故本选项符合题意;D等式的右边不是几个整式的积的形式,即从左

9、到右的变形不属于因式分解,故本选项不符合题意;故选:C【点睛】本题考查了因式分解的定义,解题时注意因式分解与整式乘法是相反的过程,二者是一个式子的不同表现形式因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式6、D【解析】D【分析】根据分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,逐项判断即可【详解】解:,选项A不符合题意;,选项B不符合题意;,选项C不符合题意;,选项D符合题意故选:D【点睛】此题主要考查了分式的基本性质,要熟练掌握,解答此题的关键是要明确:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变7、B【解析】B【分析】根

10、据全等三角形的判定定理逐个判断即可【详解】解:A1=2,AD=AD,3=4,符合全等三角形的判定定理ASA,能推出ABDACD,故本选项不符合题意;BBD=CD,AD=AD,1=2,不符合全等三角形的判定定理,不能推出ABDACD,故本选项符合题意;CB=C,1=2,AD=AD,符合全等三角形的判定定理AAS,能推出ABDACD,故本选项不符合题意;DAB=AC,1=2,AD=AD,符合全等三角形的判定定理SAS,能推出ABDACD,故本选项不符合题意;故选:B【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,

11、SSS,两直角三角形全等还有HL等8、A【解析】A【分析】根据题意可得x=2,然后把x的值代入整式方程中进行计算即可解答【详解】解:,去分母得,m+1+2x=0,解得:,方程有增根,x=2,把x=2代入,得,,解得故选A.【点睛】本题考查了分式方程的增根,根据题意求出x的值后代入整式方程中进行计算是解题的关键9、C【解析】C【分析】根据等腰三角形两个底角相等,可得:,根据传递性,可得:,再根据三角形外角等于其不相邻的两个内角的和,可得:,再根据,得到:,最后根据三角形内角和为,可得:,解出即可得到的大小【详解】解: 是的外角 (三角形内角和为) 故选:C【点睛】本题考查了等腰三角形的性质,三角

12、形的外角性质,三角形的内角和定理,解本题的关键在熟练掌握相关的性质与定理二、填空题10、B【解析】B【分析】如图作PEOA于E,PFOB于F只要证明POEPOF,PEMPFN,即可一一判断【详解】解:如图作PEOA于E,PFOB于FPEO=PFO=90,EPF+AOB=180,MPN+AOB=180,EPF=MPN,EPM=FPN,OP平分AOB,PEOA于E,PFOB于F,PE=PF,在POE和POF中, ,RtPOERtPOF(HL),OE=OF,在PEM和PFN中,PEMPFN(ASA),EM=NF,PM=PN,故正确,SPEM=SPNF,S四边形PMON=S四边形PEOF=定值,故正确

13、,OM+ON=OE+ME+OF-NF=2OE=定值,故正确,在旋转过程中,PMN是等腰三角形,顶角MPN是定值,因为腰PM的长度是变化的,所以底边MN的长度是变化的,故错误,故选:B【点睛】本题考查全等三角形的判定和性质、角平分线的性质定理等知识,解题的关键是通过添加常用辅助线,构造全等三角形解决问题,属于中考常考题型11、-2【分析】根据分式值为零得到,且,即可求出答案【详解】解:由题意得,且,x=-2,故答案为:-1、【点睛】此题考查了分式值为零的性质:分子为零,且分母不为零12、1【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数得出a,b的值,从而得出(a+b)2、【详解】解:

14、点P(2,a)关于x轴的对称点为Q(b,1),a=,b=2,(a+b)3=1故答案为1【点睛】本题主要考查了关于x轴对称的点,横坐标相同,纵坐标互为相反数,比较简单13、8【分析】由可得,再将整体代入化简即可求解【详解】解:因为,所以,所以,所以故答案为:7、【点睛】本题主要考查分式化简求值,解决本题的关键是要熟练掌握整体代入方法14、【分析】逆运用幂的乘方公式对已知式子变形后,再逆运用同底数幂的除法计算即可【详解】解:,故答案为:【点睛】本题考查幂的乘方公式和同底数幂的除法熟练掌握公式,并能逆运用是解题关键15、【分析】以AP为边作等边三角形APE,连接BE,过点E作EFAP于F,由“SAS

15、”可证ABEACP,可得BEPC,则当BE有最小值时,PC有最小值,即可求解【详解】解:如图,以AP为【解析】【分析】以AP为边作等边三角形APE,连接BE,过点E作EFAP于F,由“SAS”可证ABEACP,可得BEPC,则当BE有最小值时,PC有最小值,即可求解【详解】解:如图,以AP为边作等边三角形APE,连接BE,过点E作EFAP于F,点A的坐标为(0,6),OA6,点P为OA的中点,AP3,AEP是等边三角形,EFAP,AFPF,AEAP,EAPBAC60,BAECAP,在ABE和ACP中,ABEACP(SAS),BEPC,当BE有最小值时,PC有最小值,即BEx轴时,BE有最小值,

16、BE的最小值为OFOPPF3,PC的最小值为,故答案为【点睛】本题考查了轴对称最短路线问题,全等三角形的判定和性质,等边三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键16、10或-10#-10或10#10【分析】根据完全平方公式的形式求解即可完全平方公式:,【详解】,或,解得:m=10或-9、故答案为:10或-9、【点睛】此题考查了完全平【解析】10或-10#-10或10#10【分析】根据完全平方公式的形式求解即可完全平方公式:,【详解】,或,解得:m=10或-9、故答案为:10或-9、【点睛】此题考查了完全平方公式的形式,解题的关键是熟练掌握完全平方公式的形式完全平方公式:,1

17、7、【分析】根据完全平方公式的变形求解即可【详解】解:a+b5,故答案为:【点睛】本题主要考查了完全平方公式的变形求值,熟知完全平方公式是解题的关键【解析】【分析】根据完全平方公式的变形求解即可【详解】解:a+b5,故答案为:【点睛】本题主要考查了完全平方公式的变形求值,熟知完全平方公式是解题的关键18、2或1或4【分析】利用等角的余角相等得到CPE=QCF,根据全等三角形的判定方法,当PC=CQ时,PEC与QFC全等,设运动的时间为t s,讨论:当0t时,PC=4-t,CQ=8-3t【解析】2或1或4【分析】利用等角的余角相等得到CPE=QCF,根据全等三角形的判定方法,当PC=CQ时,PE

18、C与QFC全等,设运动的时间为t s,讨论:当0t时,PC=4-t,CQ=8-3t,当t4时,PC=4-t,CQ=3t-8,当4t12时,PC=t-4,Q点在A点,即CQ=4,分别利用PC=CQ列方程,求出t得到对应的PC的长【详解】解:ACB=90,PCE+QCF=90,PEl,QFl,PEC=QFC=90,PCE+CPE=90,CPE=QCF,当PC=CQ时,PEC与QFC全等,设运动的时间为t s,当0t时,PC=4-t,CQ=8-3t,4-t=8-3t,解得t=2,此时PC=2;当t4时,PC=4-t,CQ=3t-8,4-t=3t-8,解得t=3,此时PC=1,当4t12时,PC=t-

19、4,CQ=4,t-4=4,解得t=8,此时PC=4,综上所述,PC的长为2或1或3、故答案为:2或1或3、【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键选用哪一种判定方法,取决于题目中的已知条件三、解答题19、(1);(2)【分析】(1)首先提取公因式-6,再利用完全平方公式继续分解即可;(2)首先提取公因式3ab,再利用平方差进行分解即可【详解】解:(1)=;(2)= =【点睛】【解析】(1);(2)【分析】(1)首先提取公因式-6,再利用完全平方公式继续分解即可;(2)首先提取公因式3ab,再利用平方差进行分解即可【详解】解:(1)=;(2)= =【点

20、睛】本题主要考查了提公因式法、完全平方公式和平方差公式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果有公因式先提取公因式,再考虑运用公式来分解20、(1)x(2)无解【分析】(1)方程两边同时乘以,化为整式方程,解方程组即可求解,最后要检验;(2)方程两边同时乘以,化为整式方程,解方程组即可求解,最后要检验(1)整理方程得:去分【解析】(1)x(2)无解【分析】(1)方程两边同时乘以,化为整式方程,解方程组即可求解,最后要检验;(2)方程两边同时乘以,化为整式方程,解方程组即可求解,最后要检验(1)整理方程得:去分母:3xx2,2x5,x经检验,x是原方程的解原解方程的解为x(2)

21、两边都乘以(x21)得:(x1)24x21,x22x14x21,2x2,x1检验:当x1时,x210,x1是原方程的增根原方程无解【点睛】本题考查了解分式方程,找到最简公分母,将分式方程转化为整式方程是解题的关键21、见解析【分析】证明ABCDEF即可【详解】BCFE,1 2AFDC,AFFCDCCFACDF在ABC和DEF中,ABCDEF(【解析】见解析【分析】证明ABCDEF即可【详解】BCFE,1 2AFDC,AFFCDCCFACDF在ABC和DEF中, ABCDEF(ASA) ABDE 【点睛】本题考查了平行线的性质、三角形全等的判定与性质,关键是证明三角形全等22、(1);(2),理

22、由见解析;(3),理由见解析【分析】(1)根据四边形内角和等于360列式计算即可得解;(2)如图1,延长DE交BF于G,易证ADC=CBM,可得CDE=EBF,即可得【解析】(1);(2),理由见解析;(3),理由见解析【分析】(1)根据四边形内角和等于360列式计算即可得解;(2)如图1,延长DE交BF于G,易证ADC=CBM,可得CDE=EBF,即可得EGB=C=90,则可证得DEBF;(3)如图2,连接BD,易证NDC+MBC=180,则可得EDC+CBF=90,继而可证得EDC+CDB+CBD+FBC=180,则可得DEBF【详解】(1)A=C=90,ABC+ADC=360902=18

23、0;(2)DEBF,理由如下:如图:延长DE交BF于点GA+ABC+C+ADC=360,A=C=90ABC+ADC=180ABC+MBC=180ADC=MBCDE、BF分别平分ADC、MBCEDC=ADC,EBG= MBCEDC=EBGEDC+DEC+C=180,EBG+BEG+EGB=180,DEC=BEGEGB=C=90DEBF(3)DEBF,理由如下:如图:连接BDDE、BF分别平分NDC、MBCEDC= NDC,FBC=MBCADC+NDC=180,ADC=MBCMBC+NDC=180EDC+FBC=90C=90CDB+CBD=90EDC+CDB+FBC+CBD=180,即EDB+FB

24、D=180DEBF【点睛】本题考查了三角形内角和定理,平行线的性质以及三角形外角的性质,掌握辅助线的作法是解题的关键23、(1)甲种款式帽子的单价是10元,乙种款式帽子的单价是8元;(2)公司有9种购买方案;m的取值范围是【分析】(1)可设甲种款式帽子的单价是x元,则乙种款式帽子的单价是(x-2)元,根据等量关【解析】(1)甲种款式帽子的单价是10元,乙种款式帽子的单价是8元;(2)公司有9种购买方案;m的取值范围是【分析】(1)可设甲种款式帽子的单价是x元,则乙种款式帽子的单价是(x-2)元,根据等量关系:用80元购买甲款式帽子的数量与用64元购买乙款式帽子的数量相同,列出方程求解即可;(2

25、)设公司准备从商家购买甲种款式的帽子y顶,则从商家购买甲种款式的帽子(100-y)顶,根据不等关系:甲款式帽子的数量不能少于乙款式帽子,且不能多于乙款式帽子的,列出不等式组求解即可;根据公司购买的总费用不超过821元,列出不等式可求m的取值范围(1)解:设甲种款式帽子的单价是x元,则乙种款式帽子的单价是(x-2)元,依题意得:解得:x=10,经检验,x=10是原方程的解,且符合题意,则x-2=10-2=7、答:甲种款式帽子的单价是10元,乙种款式帽子的单价是8元;(2)设公司准备从商家购买甲种款式的帽子y顶,则从商家购买甲种款式的帽子(100-y)顶,依题意得:解得:y为整数,公司有9种购买方

26、案;依题意有:(10-m)y+8(100-y)821,(2-m)y21,y最小为34,m3,答:m的取值范围是【点睛】本题考查了分式方程的应用,一元一次不等式的应用,根据题意列出方程和不等式是解题的关键24、(1),;(2)【分析】(1)先找出一个x的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形【解析】(1),;(2)【分析】(1)先找出一个x的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式

27、的形式,即可得出结论【详解】解:(1)把带入多项式,发现此多项式的值为0,多项式中有因式,于是可设,得出:,(2)把代入,多项式的值为0,多项式中有因式,于是可设,【点睛】此题是分解因式,主要考查了试根法分解因式的理解和掌握,解本题的关键是理解试根法分解因式25、(1)(初步探索)结论:BAEFADEAF;(2)(灵活运用)成立,理由见解析【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定ABEADG,进而得出BAE=DAG【解析】(1)(初步探索)结论:BAEFADEAF;(2)(灵活运用)成立,理由见解析【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定ABEADG,进

28、而得出BAE=DAG,AE=AG,再判定AEFAGF,可得出EAF=GAF=DAG+DAF=BAE+DAF,据此得出结论;(2)延长FD到点G,使DG=BE,连接AG,先判定ABEADG,进而得出BAE=DAG,AE=AG,再判定AEFAGF,可得出EAF=GAF=DAG+DAF=BAE+DAF(1)解:BAEFADEAF理由:如图1,延长FD到点G,使DGBE,连接AG,DGBE,ABEADG,BAEDAG,AEAG,EF=BE+FD,DGBE,且AEAG,AFAF,AEFAGF,EAFGAFDAGDAFBAEDAF故答案为:BAEFADEAF;(2)如图2,延长FD到点G,使DGBE,连接AG, BADF180,ADGADF180,BADG,又ABAD,ABEADG(SAS),BAEDAG,AEAG,EFBEFDDGFDGF,AFAF,AEFAGF(SSS),EAFGAFDAGDAFBAEDAF【点睛】本题考查了全等三角形的判定以及性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形解题时注意:同角的补角相等

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服