资源描述
天津英华国际学校初一数学上册期末压轴题汇编
一、七年级上册数学压轴题
1.如图,数轴上有三个点、、,表示的数分别是、、,请回答:
(1)若使、两点的距离与、两点的距离相等,则需将点向左移动______个单位.
(2)若移动、、三点中的两个点,使三个点表示的数相同,移动方法有 种,其中移动所走的距离和最小的是_______个单位;
(3)若在表示的点处有一只小青蛙,一步跳个单位长.小青蛙第次先向左跳步,第次再向右跳步,然后第次再向左跳步,第次再向右跳步按此规律继续跳下去,那么跳第次时,应跳_______步,落脚点表示的数是_______.
(4)数轴上有个动点表示的数是,则的最小值是_______.
答案:(1)3;(2)3,7;(3)197,;(4)9.
【分析】
(1)设需将点C向左移动x个单位,再根据数轴的定义建立方程,解方程即可得;
(2)分为三种:移动点B、C;移动点A、C;移动点A、B,再
解析:(1)3;(2)3,7;(3)197,;(4)9.
【分析】
(1)设需将点C向左移动x个单位,再根据数轴的定义建立方程,解方程即可得;
(2)分为三种:移动点B、C;移动点A、C;移动点A、B,再利用数轴的定义分别求出移动所走的距离和即可得;
(3)先根据前4次归纳类推出一般规律,再列出运算式子,计算有理数的加减法即可得;
(4)分,,和数四种情况,再分别结合数轴的定义、化简绝对值即可得.
【详解】
(1)设需将点C向左移动x个单位,
由题意得:,
解得,
即需将点C向左移动3个单位,
故答案为:3;
(2),
,
,
由题意,分以下三种情况:
①移动点B、C,
把点B向左移动2个单位,点C向左移动7个单位,
此时移动所走的距离和为;
②移动点A、C,
把点A向右移动2个单位,点C向左移动5个单位,
此时移动所走的距离和为;
③移动点A、B,
把点A向右移动7个单位,点B向右移动5个单位,
此时移动所走的距离和为;
综上,移动方法有3种,其中移动所走的距离和最小的是7个单位,
故答案为:3,7;
(3)第次跳的步数为,
第次跳的步数为,
第次跳的步数为,
第次跳的步数为,
归纳类推得:第n次跳的步数为,其中n为正整数,
则第99次跳的步数为,
落脚点表示的数为,
,
,
,
故答案为:197,;
(4)由题意,分以下四种情况:
①当时,
则;
②当时,
则,
,
;
③当时,
则,
,
;
④当时,
则;
综上,,
则的最小值是9,
故答案为:9.
【点睛】
本题考查了数轴、化简绝对值、一元一次方程的应用等知识点,熟练掌握数轴的定义是解题关键.
2.已知数轴上的A、B、C、D四点所表示的数分别是a、b、c、d,且(a+16)2+(d+12)2=﹣|b﹣8|﹣|c﹣10|.
(1)求a、b、c、d的值;
(2)点A,B沿数轴同时出发相向匀速运动,4秒后两点相遇,点B的速度为每秒2个单位长度,求点A的运动速度;
(3)A,B两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,C点以每秒1个单位长度的速度向数轴正方向开始运动,若t秒时有2AB=CD,求t的值;
(4)A,B两点以(2)中的速度从起始位置同时出发,相向而行当A点运动到C点时,迅速以原来速度的2倍返回,到达出发点后,保持改变后的速度又折返向C点运动;当B点运动到A点的起始位置后停止运动.当B点停止运动时,A点也停止运动.求在此过程中,A,B两点同时到达的点在数轴上对应的数.
答案:(1)a=﹣16,b=8,c=10,d=﹣12;(2)点A的运动速度为每秒4个单位长度;(3)t的值是秒或秒;(4)A,B两点同时到达的点在数轴上表示的数为:0或9或10.2.
【分析】
(1)根据
解析:(1)a=﹣16,b=8,c=10,d=﹣12;(2)点A的运动速度为每秒4个单位长度;(3)t的值是秒或秒;(4)A,B两点同时到达的点在数轴上表示的数为:0或9或10.2.
【分析】
(1)根据平方和绝对值的非负性即可求出结论;
(2)设点A的运动速度为每秒v个单位长度,根据题意,列出一元一次方程即可求出结论;
(3)根据题意,画出对称轴,然后用t表示点A、B、C表示的数,最后分类讨论列出方程即可求出结论;
(4)求出B点运动至A点所需的时间,然后根据点A和点B相遇的情况分类讨论,列出方程求出t的值即可求出结论.
【详解】
(1)∵(a+16)2+(d+12)2=﹣|b﹣8|﹣|c﹣10|,
(a+16)2+(d+12)2+|b﹣8|+|c﹣10|=0,
∴a=﹣16,b=8,c=10,d=﹣12;
(2)设点A的运动速度为每秒v个单位长度,
4v+4×2=8+16,
v=4,
答:点A的运动速度为每秒4个单位长度;
(3)如图1,
t秒时,点A表示的数为:﹣16+4t,
点B表示的数为:8+2t,
点C表示的数为:10+t.
∵2AB=CD,
①2[(﹣16+4t)﹣(8+2t)]=10+t+12,
2(﹣24+2t)=22+t,
﹣48+4t=22+t,
3t=70,
t;
②2[(8+2t)﹣(﹣16+4t)]=10+t+12,
2(24﹣2t)=22+t,
5t=26,
t,
综上,t的值是秒或秒;
(4)B点运动至A点所需的时间为12(s),故t≤12,
①由(2)得:
当t=4时,A,B两点同时到达的点表示的数是﹣16+4×4=0;
②当点A从点C返回出发点时,若与B相遇,
由题意得:6.5(s),3.25(s),
∴点A到C,从点C返回到出发点A,用时6.5+3.25=9.75(s),
则2×4×(t﹣6.5)=10﹣8+2t,
t=9<9.75,
此时A,B两点同时到达的点表示的数是8﹣9×2=﹣10;
③当点A第二次从出发点返回点C时,若与点B相遇,则
8(t﹣9.75)+2t=16+8,
解得:t=10.2;
综上所述:A,B两点同时到达的点在数轴上表示的数为:0或9或10.2.
【点睛】
此题考查的是一元一次方程的应用、数轴与动点问题,掌握平方、绝对值的非负性、行程问题公式和分类讨论的数学思想是解决此题的关键.
3.已知:b是最小的正整数,且、b、c满足,请回答问题.
(1)请直接写出、b、c的值.
(2)、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为,点P在0到2之间运动时(即0≤x≤2时),请化简式子: (请写出化简过程).
(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BCAB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
答案:(1)-1;1;5;(2)4x+10或2x+12;(3)不变,理由见解析
【分析】
(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b
解析:(1)-1;1;5;(2)4x+10或2x+12;(3)不变,理由见解析
【分析】
(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;
(2)根据x的范围,确定x+1,x-3,5-x的符号,然后根据绝对值的意义即可化简;
(3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.
【详解】
解:(1)∵b是最小的正整数,∴b=1.
根据题意得:c-5=0且a+b=0,
∴a=-1,b=1,c=5.
故答案是:-1;1;5;
(2)当0≤x≤1时,x+1>0,x-1≤0,x+5>0,
则:|x+1|-|x-1|+2|x+5|
=x+1-(1-x)+2(x+5)
=x+1-1+x+2x+10
=4x+10;
当1<x≤2时,x+1>0,x-1>0,x+5>0.
∴|x+1|-|x-1|+2|x+5|=x+1-(x-1)+2(x+5)
=x+1-x+1+2x+10
=2x+12;
(3)不变.理由如下:
t秒时,点A对应的数为-1-t,点B对应的数为2t+1,点C对应的数为5t+5.
∴BC=(5t+5)-(2t+1)=3t+4,AB=(2t+1)-(-1-t)=3t+2,
∴BC-AB=(3t+4)-(3t+2)=2,
即BC-AB值的不随着时间t的变化而改变.
【点睛】
本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.
4.已知数轴上,M表示-10,点N在点M的右边,且距M点40个单位长度,点P,点Q是数轴上的动点.
(1)直接写出点N所对应的数;
(2)若点P从点M出发,以5个单位长度/秒的速度向右运动,同时点Q从点N出发,以3个单位长度/秒向左运动,设点P、Q在数轴上的D点相遇,求点D的表示的数;
(3)若点P从点M出发,以5个单位长度/秒的速度向右运动,同时点Q从点N出发,以3个单位长度/秒向右运动,问经过多少秒时,P,Q两点重合?
答案:(1)30;(2)15;(3)20秒
【分析】
(1)根据数轴上两点之间的距离得出结果;
(2)利用时间=路程÷速度和算出相遇时间,再计算出点D表示的数;
(3)利用时间=路程÷速度差算出相遇时间即
解析:(1)30;(2)15;(3)20秒
【分析】
(1)根据数轴上两点之间的距离得出结果;
(2)利用时间=路程÷速度和算出相遇时间,再计算出点D表示的数;
(3)利用时间=路程÷速度差算出相遇时间即可.
【详解】
解:(1)-10+40=30,
∴点N表示的数为30;
(2)40÷(3+5)=5秒,
-10+5×5=15,
∴点D表示的数为15;
(3)40÷(5-3)=20,
∴经过20秒后,P,Q两点重合.
【点睛】
本题考查了数轴上两点之间的距离,解题的关键是掌握相遇问题和追击问题之间的数量关系.
5.已知多项式,次数是b,4a与b互为相反数,在数轴上,点A表示a,点B表示数b.
(1)a= ,b= ;
(2)若小蚂蚁甲从点A处以3个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B处以4个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.(写出解答过程)
(3)若小蚂蚁甲和乙约好分别从A,B两点,分别沿数轴甲向左,乙向右以相同的速度爬行,经过一段时间原路返回,刚好在16s时一起重新回到原出发点A和B,设小蚂蚁们出发t(s)时的速度为v(mm/s),v与t之间的关系如下图,(其中s表示时间单位秒,mm表示路程单位毫米)
t(s)
0<t≤2
2<t≤5
5<t≤16
v(mm/s)
10
16
8
①当t为1时,小蚂蚁甲与乙之间的距离是 .
②当2<t≤5时,小蚂蚁甲与乙之间的距离是 .(用含有t的代数式表示)
答案:(1)-2,8;(2)秒或10秒;(3)①30mm;②32t-14
【分析】
(1)根据多项式的次数的定义可得b值,再由相反数的定义可得a值;
(2)分两种情况讨论:①甲乙两小蚂蚁均向左运动,即0≤
解析:(1)-2,8;(2)秒或10秒;(3)①30mm;②32t-14
【分析】
(1)根据多项式的次数的定义可得b值,再由相反数的定义可得a值;
(2)分两种情况讨论:①甲乙两小蚂蚁均向左运动,即0≤t≤2时,此时OA=2+3t,OB=8-4t;②甲向左运动,乙向右运动,即t>2时,此时OA=2+3t,OB=4t-8;
(3)①令t=1,根据题意列出算式计算即可;
②先得出小蚂蚁甲和乙爬行的路程及各自爬行的返程的路程,则可求得小蚂蚁甲与乙之间的距离.
【详解】
解:(1)∵多项式4x6y2-3x2y-x-7,次数是b,
∴b=8;
∵4a与b互为相反数,
∴4a+8=0,
∴a=-2.
故答案为:-2,8;
(2)分两种情况讨论:
①甲乙两小蚂蚁均向左运动,即0≤t≤2时,此时OA=2+3t,OB=8-4t;
∵OA=OB,
∴2+3t=8-4t,
解得:t=;
②甲向左运动,乙向右运动,即t>2时,此时OA=2+3t,OB=4t-8;
∵OA=OB,
∴2+3t=4t-8,
解得:t=10;
∴甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t为秒或10秒;
(3)①当t为1时,
小蚂蚁甲与乙之间的距离是:8+10×1-(-2-10×1)=30mm;
②∵小蚂蚁甲和乙同时出发以相同的速度爬行,
∴小蚂蚁甲和乙爬行的路程是相同的,各自爬行的总路程都等于:
10×2+16×3+8×11=156(mm),
∵原路返回,刚好在16s时一起重新回到原出发点A和B,
∴小蚂蚁甲和乙返程的路程都等于78mm,
∴甲乙之间的距离为:8-(-2)+10×2×2+16×(t-2)×2=32t-14.
故答案为:32t-14.
【点睛】
本题考查了一元一次方程在数轴上两点之间的距离问题中的应用,具有方程思想并会分类讨论是解题的关键.
6.已知:a是最大的负整数,且a、b满足|c-7|+(2a+b)2=0,请回答问题:
(1)请直接写出a、b、c的值:a =_____,b =_____,c =_____;
(2)数a、b、c所对应的点分别为A、B、C,已知数轴上两点间的距离为这两点所表示的数的差的绝对值(或用这两点所表示的数中较大的数减去较小的数),若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC-AB的值;
(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,则经过t秒钟时,请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由,若不变,请求其值.
答案:(1)-1,2,7;(2)2;(3)BC-AB的值不随着时间t的变化而改变,其值为2
【分析】
(1)根据a是最大的负整数,即可确定a的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即
解析:(1)-1,2,7;(2)2;(3)BC-AB的值不随着时间t的变化而改变,其值为2
【分析】
(1)根据a是最大的负整数,即可确定a的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得b,c的值;
(2)根据两点间的距离公式可求BC、AB的值,进一步得到BC-AB的值;
(3)先求出BC=3t+5,AB=3t+3,从而得出BC-AB,从而求解.
【详解】
解:(1)∵a是最大的负整数,
∴a=-1,
∵|c-7|+(2a+b)2=0,
∴c-7=0,2a+b=0,
∴b=2,c=7.
故答案为:-1,2,7;
(2)BC-AB
=(7-2)-(2+1)
=5-3
=2.
故此时BC-AB的值是2;
(3)BC-AB的值不随着时间t的变化而改变,其值为2.理由如下:
t秒时,点A对应的数为-1-t,点B对应的数为2t+2,点C对应的数为5t+7.
∴BC=(5t+7)-(2t+2)=3t+5,AB=(2t+2)-(-1-t)=3t+3,
∴BC-AB=(3t+5)-(3t+3)=2,
∴BC-AB的值不随着时间t的变化而改变,其值为2.
【点睛】
此题考查有理数及整式的混合运算,以及数轴,正确理解AB,BC的变化情况是关键.
7.数轴上有三点,给出如下定义;若其中一个点与其他两个点的距离恰好满足倍的数量关系,则称该点是其它两个点的:“关联点”
(1)例图,数轴上点三点所表示的数分别为,点到点的距离 ,点到点的距离是 ,因为是的两倍,所以称点是点的“关联点”.
(2)若点表示数点表示数,下列各数所对应的点分别是,其中是点的“关联点”的是 ;
(3)点表示数,点表示数为数轴上一个动点;若点在点的左侧,且点是点的“关联点”,求此时点表示的数;若点在点的右侧,点中,有一个点恰好是其它两个点的“关联点”.请直接写出此时点表示的数
答案:(1)2,1;(2);;(3)当P在点B的左侧时,P表示的数为-35或或;若点P在点B的右侧,P表示的数为40或或.
【分析】
(1)利用数轴上两点之间的距离公式直接可求得;
(2)根据题意求得CA
解析:(1)2,1;(2);;(3)当P在点B的左侧时,P表示的数为-35或或;若点P在点B的右侧,P表示的数为40或或.
【分析】
(1)利用数轴上两点之间的距离公式直接可求得;
(2)根据题意求得CA与BC的关系,得到答案;
(3)根据PA=2PB或PB=2PA列方程求解;分当P为A、B关联点、A为P、B关联点、B为A、P关联点三种情况列方程解答.
【详解】
解:(1)三点所表示的数分别为,
AB=3-1=2;BC=4-3=1,
故答案是:2,1;
(2)点A表示的数为-2,点B表示的数为1,表示的数为-1
=1 ,=2
是点A,B的“关联点”
点A表示的数为-2,点B表示的数为1,表示的数为2
=4 ,=1
不是点A,B的“关联点”
点A表示的数为-2,点B表示的数为1,表示的数为4
=6 ,=3
是点A,B的“关联点”
点A表示的数为-2,点B表示的数为1,表示的数为6
=8 ,=5
不是点A,B的“关联点”
故答案为:
(3)①若点P在点B的左侧,且点P是点A,B的“关联点”,设点P表示的数为
(I) 当P在点A的左侧时,则有:2PA=PB,即2(-10-)=15-
解得 =-35
(II)当点P在A,B之间时,有2PA=PB或PA=2PB
既有2(+10)=15-或+10=2(15-)
解得=或
因此点P表示的数为-35或或
②若点P在点B的右侧
(I)若点P是A,B的“关联点”则有2PB=PA
即2(-15)=+10
解得=40
(II)若点B是A,P的“关联点”则有2AB=PB或AB=2PB
即2(15+10)=-15或15+10=2(x-15)
解得=65或
(III)若点A是B,P的“关联点”则有2AB=AP
即2(15+10)=+10
解得=40
因此点P表示的数为40或或
【点睛】
本题考查了一元一次方程的应用,数轴及数轴上两点的距离、动点问题,认真理解关联点的概念,分情况讨论列式是解题关键.
8.已知,如图,实数a、b、c在数轴上表示的点分别是点A、B、C,且a、b、c满足.
(1)求a、b、c的值;
(2)若点A沿数轴向左以每秒1个单位的速度运动,点B和点C沿数轴向右运动,速度分别是2个单位/秒、3个单位/秒.设运动时间为t(秒).
①2秒后,点A、B、C表示的数分别是 , , ;
②运动t秒后,求点B和点C之间的距离(用“BC”表示)和点A和点B之间的距离(用“AB”表示);(用含t的代数式表示)
③在②的基础上,请问:3×BC-AB的值是否随着时间t的变化而变化?若不变化,求这个不变的值;若变化,求这个值的变化范围;
(3)若点A沿数轴向右以每秒1个单位的速度运动,点B和点C沿数轴向左运动,速度分别是2个单位/秒、3个单位/秒.设运动时间为t(秒).是否存在某一时刻,满足点A和点B之间的距离是点B和点C之间的距离的?若存在,直接写出时间t的值;若不存在,说明理由.
答案:(1);(2)① ,;②, ;③不变,这个不变的值为;(3)存在,,.
【分析】
(1)根据平方与绝对值的和为0,可得平方与绝对值同时为0,可得a、b、c的值,根据两点间的距离,可得答案;
(2)①
解析:(1);(2)① ,;②, ;③不变,这个不变的值为;(3)存在,,.
【分析】
(1)根据平方与绝对值的和为0,可得平方与绝对值同时为0,可得a、b、c的值,根据两点间的距离,可得答案;
(2)①2秒时A计算-8-2,B计算-2+2×2,C计算3+2×3即可,
②t秒时,点A表示-8-t,点B表示-2+2t,点C表示3+3t,根据根据两点间的距离公式计算BC=3+3t-(-2+2t),AB=-2+2t-(-8-t),
③计算3×BC-AB=3(5+t)-(8+3t)即可;
(3)分类讨论.先把A、B、C用t表示,点A表示-8+t,点B表示-2-2t,,点C表示3-3t,BC=3-3t-(-2-2t)=3-3t+2+2t=5-t,AB=-2-2t-(-8+t)=-2-2t+8-t=6-3t,时5-t=2(6-3t), 时5-t=2(3t-6), t≥5时,t-5=2(3t-6)即可.
【详解】
(1)依题意,=0,=0,=0.
所以,,.
(2)①2秒后,点A表示-8-2=-10,
点B表示-2+2×2=-2+4=2,
点C表示3+2×3=3+6=9,
2秒后,点A、B、C表示的数分别是-10,2, 9;
②t秒时,点A表示-8-t,点B表示-2+2t,点C表示3+3t,
BC=3+3t-(-2+2t)=3+3t+2-2t=5+t,
AB=-2+2t-(-8-t)=-2+2t+8+t=6+3t,
③3×BC-AB=3(5+t)-(6+3t)=15+3t-6-3t=9
不变化,这个不变的值为9;
(3)t秒时,点A表示-8+t,点B表示-2-2t,点C表示3-3t,
BC=3-3t-(-2-2t)=3-3t+2+2t=5-t,
AB=-2-2t-(-8+t)=-2-2t+8-t=6-3t,
时5-t=2(6-3t),t=
时5-t=2(3t-6),t=
t≥5时,t-5=2(3t-6),t=舍去
存在,时间t的值为或.
【点睛】
本题考查了实数与数轴,非负数的性质,列代数式,整式的加减,两点间的距离公式,分类构造方程是解题关键.
9.如图,在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c﹣7)2=0.
(1)a= ,b= ,c= ;
(2)若将数轴折叠,使得A点与C点重合,则点B与数 表示的点重合;
(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)
(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
答案:(1)-2, 1,c=7;(2)4;(3)3t+3, 5t+9, 2t+6;(4)不变,3BC﹣2AB=12.
【分析】
(1)利用|a+2|+(c−7)2=0,得a+2=0,c−7=0,解得a,c
解析:(1)-2, 1,c=7;(2)4;(3)3t+3, 5t+9, 2t+6;(4)不变,3BC﹣2AB=12.
【分析】
(1)利用|a+2|+(c−7)2=0,得a+2=0,c−7=0,解得a,c的值,由b是最小的正整数,可得b=1;
(2)先求出对称点,即可得出结果;
(3)AB原来的长为3,所以AB=t+2t+3=3t+3,再由AC=9,得AC=t+4t+9=5t+9,由原来BC=6,可知BC=4t−2t+6=2t+6;
(4)由 3BC−2AB=3(2t+6)−2(3t+3)求解即可.
【详解】
(1)∵|a+2|+(c−7)2=0,
∴a+2=0,c−7=0,
解得a=−2,c=7,
∵b是最小的正整数,
∴b=1;
故答案为:−2;1;7.
(2)(7+2)÷2=4.5,
对称点为7−4.5=2.5,
2.5+(2.5−1)=4;
故答案为:4.
(3)依题意可得AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;
故答案为:3t+3;5t+9;2t+6.
(4)不变.
3BC−2AB=3(2t+6)−2(3t+3)=12.
【点睛】
本题主要考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.
10.阅读理解:定义:A,B,C为数轴上三点,若点C到点A的距离是它到点B的时距离的n(n为大于1的常数)倍,则称点C是(A,B)的n倍点,且当C是(A,B)的n倍点或(B,A)的n倍点时,我们也称C是A和B两点的n倍点.例如,在图1中,点C是(A,B)的2倍点,但点C不是(B,A)的2倍点.
(1)特值尝试.
①若,图1中,点________是(D,C)的2倍点.(填A或B)
②若,如图2,M,N为数轴上两个点,点M表示的数是,点N表示的数是4,数________表示的点是(M,N)的3倍点.
(2)周密思考:
图2中,一动点P从N出发,以每秒2个单位的速度沿数轴向左运动t秒,若P恰好是M和N两点的n倍点,求所有符合条件的t的值.(用含n的式子表示)
(3)拓展应用:
数轴上两点间的距离不超过30个单位长度时,称这两点处于“可视距离”.若(2)中满足条件的M和N两点的所有n倍点P均处于点N的“可视距离”内,请直接写出n的取值范围.(不必写出解答过程)
答案:(1)①B ;②或7;(2)或或;(3)
【分析】
(1)①直接根据新定义的概念即可得出答案;
②根据新定义的概念列绝对值方程求解即可得出答案;
(2)设点P所表示的数为,再根据新定义的概念列方程求
解析:(1)①B ;②或7;(2)或或;(3)
【分析】
(1)①直接根据新定义的概念即可得出答案;
②根据新定义的概念列绝对值方程求解即可得出答案;
(2)设点P所表示的数为,再根据新定义的概念列方程求解即可;
(3)分,,三种情况分别表示出PN的值,再根据PN的范围列不等式组求解即可.
【详解】
(1)①由数轴可知,
点A表示的数为,点B表示的数为2,
点C表示的数为1,点D表示的数为0,
,,
,
数点A不是【D,C】的2倍点,
,,
,
∴点B是【D,C】的2倍点,
故答案为:B.
②若点C是点【M,N】的3倍点,
,
设点C表示的数为,
,,
,
即或,
解得或,
数或7表示的点是【M,N】的3倍点.
(2)设点P所表示的数为,
点P是M,N两点的倍点,
当点P是【M,N】的n倍点时,
,
,
或,
解得或,
,
,
当点P是【N,M】的n倍点时,,
,,
或,解得或,
符合条件的的值为或或.
(3),
当时,,
当时,,
当时,,
点P均在点N的可视点距离之内,
,解得,
的取值范围是.
【点睛】
本题考查了倍点的概念,解题的关键是掌握倍点的两种不同情况.
11.如图1,P点从点A开始以的速度沿的方向移动,Q点从点C开始以的速度沿的方向移动,在直角三角形中,,若,,,如果P,Q同时出发,用t(秒)表示移动时间.
(1)如图1,若点P在线段上运动,点Q在线段上运动,当t为何值时,;
(2)如图2,点Q在上运动,当t为何值时,三角形的面积等于三角形面积的;
(3)如图3,当P点到达C点时,P,Q两点都停止运动,当t为何值时,线段的长度等于线段的长.
答案:(1)4,(2)9,(3)或4
【分析】
(1)当P在线段AB上运动,Q在线段CA上运动时,设CQ=t,AP=2t,则AQ=12﹣t,由AQ=AP,可得方程12﹣t=2t,解方程即可.
(2)当Q在
解析:(1)4,(2)9,(3)或4
【分析】
(1)当P在线段AB上运动,Q在线段CA上运动时,设CQ=t,AP=2t,则AQ=12﹣t,由AQ=AP,可得方程12﹣t=2t,解方程即可.
(2)当Q在线段CA上时,设CQ=t,则AQ=12﹣t,根据三角形QAB的面积等于三角形ABC面积的,列出方程即可解决问题.
(3)分三种情形讨论即可①当0<t≤8时,P在线段AB上运动,Q在线段CA上运动.②当8<t≤12时,Q在线段CA上运动,P在线段BC上运动.③当t>12时,Q在线段AB上运动,P在线段BC上运动时,分别列出方程求解即可.
【详解】
解:(1)当P在线段AB上运动,Q在线段CA上运动时,设CQ=t,AP=2t,则AQ=12﹣t,
∵AQ=AP,
∴12﹣t=2t,
∴t=4.
∴t=4时,AQ=AP.
(2)当Q在线段CA上时,设CQ=t,则AQ=12﹣t,
∵三角形QAB的面积等于三角形ABC面积的,
∴•AB•AQ=וAB•AC,
∴×16×(12﹣t)=×16×12,解得t=9.
∴t=9时,三角形QAB的面积等于三角形ABC面积的.
(3)由题意可知,Q在线段CA上运动的时间为12秒,P在线段AB上运动时间为8秒,
①当0<t≤8时,P在线段AB上运动,Q在线段CA上运动,设CQ=t,AP=2t,则AQ=12﹣t,BP=16﹣2t,
∵AQ=BP,
∴12﹣t=16﹣2t,解得t=4.
②当8<t≤12时,Q在线段CA上运动,P在线段BC上运动,设CQ=t,则AQ=12﹣t,BP=2t﹣16,
∵AQ=BP,
∴12﹣t=2t﹣16,解得t=.
③当t>12时,Q在线段AB上运动,P在线段BC上运动时,
∵AQ=t﹣12,BP=2t﹣16,
∵AQ=BP,
∴t﹣12=2t﹣16,解得t=4(舍去),
综上所述,t=或4时,AQ=BP.
【点睛】
本题考查线段和差、一元一次方程等知识,解题的关键是理解题意,学会用方程的思想思考问题,属于中考常考题型.
12.如图,点、在数轴上分别表示实数、,、两点之间的距离表示为,在数轴上、两点之间的距离请你利用数轴回答下列问题:
(1)数轴上表示2和6两点之间的距离是________,数轴上表示1和的两点之间的距离为________.
(2)数轴上表示和1两点之间的距离为_______,数轴上表示和两点之间的距离为________.
(3)若表示一个实数,且,化简________.
(4)的最小值为________.
(5)的最大值为________.
答案:(1)4,3;(2)|x-1|,|x+3|;(3)8;(4)6;(5)4
【分析】
(1)(2)直接代入公式即可;
(3)实质是在点表示3和-5的点之间取一点,计算该点到点3和-5的距离和;
(4)
解析:(1)4,3;(2)|x-1|,|x+3|;(3)8;(4)6;(5)4
【分析】
(1)(2)直接代入公式即可;
(3)实质是在点表示3和-5的点之间取一点,计算该点到点3和-5的距离和;
(4)可知x对应点在3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|值最小;
(5)分当-1<x<3时,当x≤-1时,当x≥3时,三种情况分别化简,从而求出最大值.
【详解】
解:(1)|6-2|=4,|-2-1|=3,
答案为:4,3;
(2)根据两点间距离公式可知:数轴上表示x和1两点之间的距离为|x-1|,
数轴上表示x和-3两点之间的距离为|x+3|,
故答案为:|x-1|,|x+3|;
(3)x对应点在点-5和3之间时的任意一点时|x-3|+|x+5|的值都是8,
故答案为:8;
(4)|x-1|+|x-2|+|x-3|+|x-4|+|x-5|表示数x到1,2,3,4,5的距离之和,
可知:当x对应点是3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值为6,
故答案为:6;
(5)当-1<x<3时,|x+1|-|x-3|=x+1+x-3=2x-2,
-4<2x-2<4,
当x≤-1时,|x+1|-|x-3|=-x-1+x-3=-4,
当x≥3时,|x+1|-|x-3|=x+1-x+3=4,
综上:的最大值为4.
【点睛】
此题主要考查了绝对值、数轴等知识,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.
13.同学们,我们在本期教材中曾经学习过绝对值的概念:在数轴上,表示一个数的点与原点的距离叫做这个数的绝对值,记作.
实际上,数轴上表示数的点与原点的距离可记作;数轴上表示数的点与表示数2的点的距离可记作,也就是说,在数轴上,如果点表示的数记为点表示的数记为,则两点间的距离就可记作.
(学以致用)
(1)数轴上表示1和的两点之间的距离是_______;
(2)数轴上表示与的两点和之间的距离为2,那么为________.
(解决问题)
如图,已知分别为数轴上的两点,点表示的数是,点表示的数是50.
(3)现有一只蚂蚁从点出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一只蚂蚁恰好从点出发,以每秒2个单位长度的速度沿数轴向右移动.
①求两只蚂蚁在数轴上相遇时所用的时间;
②求两只蚂蚁在数轴上距离10个单位长度时的时间.
(数学理解)
(4)数轴上两点对应的数分别为,已知,点从出发向右以每秒3个单位长度的速度运动.表达出秒后之间的距离___________(用含的式子表示).
答案:(1);(2)或;(3)①;②或;(4)
【分析】
(1)直接利用两点间的距离公式进行计算即可得到答案;
(2)由数轴上表示与的两点间的距离为,列方程再解方程可得答案;
(3)①由路程除以两只蚂蚁的
解析:(1);(2)或;(3)①;②或;(4)
【分析】
(1)直接利用两点间的距离公式进行计算即可得到答案;
(2)由数轴上表示与的两点间的距离为,列方程再解方程可得答案;
(3)①由路程除以两只蚂蚁的速度和可得答案;②设后两只蚂蚁在数轴上距离10个单位长度,再分别表示后对应的数为 对应的数为,用含的代数式表示 再列方程,解方程可得答案;
(4)先求解的值,再表示后对应的数为,再利用两点间的距离公式表示之间的距离即可得到答案.
【详解】
解:(1)数轴上表示1和的两点之间的距离是
故答案为:
(2)由题意得:
或
或
故答案为:或
(3)①由题意可得:
所以两只蚂蚁在数轴上相遇时所用的时间为:
②如图,设后两只蚂蚁在数轴上距离10个单位长度,
由题意得:后对应的数为 对应的数为,
,
或,
或,
经检验:或符合题意,
所以当或两只蚂蚁在数轴上距离10个单位长度.
(4) ,
且,
如图,秒后对应的数为:,
故答案为:
【点睛】
本题考查的是数轴上两点之间的距离,数轴上的动点问题,绝对值方程的应用,非负数的性质,一元一次方程的解法,整式的加减运算,掌握以上知识是解题的关键.
14.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠D=30
展开阅读全文