收藏 分销(赏)

广州市七年级数学压轴题专题.doc

上传人:天**** 文档编号:5192533 上传时间:2024-10-28 格式:DOC 页数:39 大小:2.30MB
下载 相关 举报
广州市七年级数学压轴题专题.doc_第1页
第1页 / 共39页
广州市七年级数学压轴题专题.doc_第2页
第2页 / 共39页
广州市七年级数学压轴题专题.doc_第3页
第3页 / 共39页
广州市七年级数学压轴题专题.doc_第4页
第4页 / 共39页
广州市七年级数学压轴题专题.doc_第5页
第5页 / 共39页
点击查看更多>>
资源描述

1、广州市七年级数学压轴题专题一、七年级上册数学压轴题1已知:,、是内的射线(1)如图1,若平分,平分当射线绕点在内旋转时,求的度数(2)也是内的射线,如图2,若,平分,平分,当射线绕点在内旋转时,求的大小2(阅读理解)若为数轴上三点,若点到的距离是点到的距离的2倍,我们就称点是()的优点例如,如图1,点表示的数为-1,点表示的数为2,表示1的点到点的距离是2,到点的距离是1,那么点是()的优点:又如,表示0的点到点的距离是1,到点的距离是2,那么点就不是()的优点,但点是()的优点(知识运用)如图2,为数轴上两点,点所表示的数为-2,点所表示的数为4(1)数所表示的点是()的优点:(2)如图3,

2、为数轴上两点,点所表示的数为-20,点所表示的数为40.现有一只电子蚂蚁从点出发,以3个单位每秒的速度向左运动,到达点停止当为何值时,和中恰有一个点为其余两点的优点?(请直接与出答案)3已知:b是最小的正整数,且、b、c满足,请回答问题(1)请直接写出、b、c的值 (2)、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为,点P在0到2之间运动时(即0x2时),请化简式子: (请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点

3、C之间的距离表示为BC,点A与点B之间的距离表示为AB请问:BCAB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值4“数形结合”是重要的数学思想请你结合数轴与绝对值的知识回答下列问题:(1)一般地,数轴上表示数m和数n的两点之间的距离等于mn如果表示数a和2的两点之间的距离是3,记作a(2)3,那么a (2)利用绝对值的几何意义,探索a4a2的最小值为_,若a4a210,则a的值为_(3)当a_时,a5a1a4的值最小(4)如图,已知数轴上点A表示的数为4,点B表示的数为1,C是数轴上一点,且AC8,动点P从点B出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间

4、为t(t0)秒点M是AP的中点,点N是CP的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,求线段MN的长度5如图,在数轴上点A表示的数是3,点B在点A的右侧,且到点A的距离是18;点C在点A与点B之间,且到点B的距离是到点A距离的2倍(1)点B表示的数是;点C表示的数是;(2)若点P从点A出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动设运动时间为t秒,当P运动到C点时,点Q与点B的距离是多少?(3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB在运动过程中,

5、是否存在某一时刻使得PC+QB4?若存在,请求出此时点P表示的数;若不存在,请说明理由6已知:a是最大的负整数,且a、b满足|c-7|+(2a+b)2=0,请回答问题:(1)请直接写出a、b、c的值:a =_,b =_,c =_;(2)数a、b、c所对应的点分别为A、B、C,已知数轴上两点间的距离为这两点所表示的数的差的绝对值(或用这两点所表示的数中较大的数减去较小的数),若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC-AB的值;(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单

6、位长度和5个单位长度的速度向右运动,则经过t秒钟时,请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由,若不变,请求其值7数轴上有A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”例如:数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“关联点”回答下列问题:(1)若点A表示数-2,点B表示数1下列各数-1,2,4,6所对应的点是、.其中是点A,B的“关联点”的是_(2)点A表示数4,点B表示数10,P为数轴上一个动点:若点P在点B的左侧,且点P是点A,B的“关联点”,则此时点P表示的数是多少?若

7、点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“关联点”,请直接写出此时点P表示的数8如图,数轴上有三个点、,表示的数分别是、,请回答:(1)若使、两点的距离与、两点的距离相等,则需将点向左移动_个单位(2)若移动、三点中的两个点,使三个点表示的数相同,移动方法有 种,其中移动所走的距离和最小的是_个单位;(3)若在表示的点处有一只小青蛙,一步跳个单位长小青蛙第次先向左跳步,第次再向右跳步,然后第次再向左跳步,第次再向右跳步按此规律继续跳下去,那么跳第次时,应跳_步,落脚点表示的数是_(4)数轴上有个动点表示的数是,则的最小值是_9已知,一个点从数轴上的原点开始先向左移动6cm到

8、达A点,再从A点向右移动10cm到达B点,点C是线段AB的中点(1)点C表示的数是 ;(2)若点A以每秒2cm的速度向左移动,同时C、B两点分别以每秒1cm、4cm的速度向右移动,设移动时间为t秒,运动t秒时,点C表示的数是 (用含有t的代数式表示);当t2秒时,CBAC的值为 试探索:点A、B、C在运动的过程中,线段CB与AC总有怎样的数量关系?并说明理由10(背景知识)数轴是数学中的一个重要工具,利用数轴可以将数与形完美地结合,研究数轴我们发现了一些重要的规律:若数轴上点A,B表示的数分别为a,b,则A,B两点之间的距离,线段的中点表示的数为(问题情境)如图,数轴上点A表示的数为,点B表示

9、的数为8,点P从点A出发,以每秒4个单位的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒1个单位的速度向右匀速运动设运动时间为(综合运用)(1)填空:A,B两点间的距离_,线段的中点表示的数为_用含t的代数式表示:后,点P表示的数为_,点Q表示的数为_(2)求当t为何值时,P,Q两点相遇,并写出相遇点表示的数(3)求当t为何值时,(4)若M为的中点,N为的中点,点P在运动过程中,线段的长是否发生变化?若变化,请说明理由,若不变,请求出线段的长11如图1,在内部作射线,在左侧,且(1)图1中,若平分平分,则_;(2)如图2,平分,探究与之间的数量关系,并证明;(3)设,过点O作射线,使为的平

10、分线,再作的角平分线,若,画出相应的图形并求的度数(用含m的式子表示)12如图1,平面内一定点A在直线EF的上方,点O为直线EF上一动点,作射线OA、OP、OA,当点O在直线EF上运动时,始终保持EOP90、AOPAOP,将射线OA绕点O顺时针旋转60得到射线OB(1)如图1,当点O运动到使点A在射线OP的左侧,若OA平分POB,求BOF的度数;(2)当点O运动到使点A在射线OP的左侧,且AOE3AOB时,求的值;(3)当点O运动到某一时刻时,AOB130,请直接写出BOP_度13(学习概念) 如图1,在AOB的内部引一条射线OC,则图中共有3个角,分别是AOB、AOC和BOC若其中有一个角的

11、度数是另一个角度数的两倍,则称射线OC是AOB的“好好线”(理解运用)(1)如图2,若MPQNPQ,则射线PQ MPN的“好好线”(填“是”或“不是”);若MPQNPQ,MPQ,且射线PQ是MPN的“好好线”,请用含的代数式表示MPN;(拓展提升) (2)如图3,若MPN120,射线PQ绕点P从PN位置开始,以每秒12的速度逆时针旋转,旋转的时间为t秒当PQ与PN成110时停止旋转同时射线PM绕点P以每秒6的速度顺时针旋转,并与PQ同时停止 当PQ、PM其中一条射线是另一条射线与射线PN的夹角的“好好线”时,则t 秒14如图,AOB150,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每秒

12、6;射线OD从OB开始,绕点O顺时针旋转,旋转的速度为每秒14,OC和OD同时旋转,设旋转的时间为t秒(0t25)(1)当t为何值时,射线OC与OD重合;(2)当t为何值时,COD90;(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC、OB与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请直接写出所有满足题意的t的取值,若不存在,请说明理由15如图1,射线OC在的内部,图中共有3个角:、,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是的“定分线”(1)一个角的平分线_这个角的“定分线”;(填“是”或“不是”)(2)如图2,若,且射线PQ是的“定分线

13、”,则_(用含a的代数式表示出所有可能的结果);(3)如图2,若=48,且射线PQ绕点P从PN位置开始,以每秒8的速度逆时针旋转,当PQ与PN成90时停止旋转,旋转的时间为t秒;同时射线PM绕点P以每秒4的速度逆时针旋转,并与PQ同时停止当PQ是的“定分线”时,求t的值16如图,一副三角板中各有一个顶点在直线的点处重合,三角板的边落在直线上,三角板绕着顶点任意旋转两块三角板都在直线的上方,作的平分线,且,(1)当点在射线上时(如图1),的度数是_(2)现将三角板绕着顶点旋转一个角度(即),请就下列两种情形,分别求出的度数(用含的代数式表示)当为锐角时(如图2);当为钝角时(如图3);17已知点

14、C在线段AB上,AC2BC,点D,E在直线AB上,点D在点E的左侧(1)若AB15,DE6,线段DE在线段AB上移动如图1,当E为BC中点时,求AD的长;点F(异于A,B,C点)在线段AB上,AF3AD,CF3,求AD的长;(2)若AB2DE,线段DE在直线AB上移动,且满足关系式,求的值18(阅读理解)射线OC是AOB内部的一条射线,若COABOC,则我们称射线OC是射线OA关于AOB的伴随线例如,如图1,若AOCBOC,则称射线OC是射线OA关于AOB的伴随线;若BOD COD,则称射线OD是射线OB关于BOC的伴随线(知识运用)如图2,AOB120(1)射线OM是射线OA关于AOB的伴随

15、线则AOM_(2)射线ON是射线OB关于AOB的伴随线,射线OQ是AOB的平分线,则NOQ的度数是_(3)射线OC与射线OA重合,并绕点O以每秒2的速度逆时针旋转,射线OD与射线OB重合,并绕点O以每秒3的速度顺时针旋转,当射线OD与射线OA重合时,运动停止是否存在某个时刻t(秒),使得COD的度数是20,若存在,求出t的值,若不存在,请说明理由当t为多少秒时,射线OC、OD、OA中恰好有一条射线是其余两条射线组成的角的一边的伴随线19如图,已知,是等边三角形(三条边都相等、三个角都等于的三角形),平分(1)如图1,当时,_;(2)如图2,当时,_;(3)如图3,当时,求的度数,请借助图3填空

16、解:因为,所以,因为平分,所以_(用表示),因为为等边三角形,所以,所以_(用表示)(4)由(1)(2)(3)问可知,当时,直接写出的度数(用来表示,无需说明理由)20同学们,我们在本期教材中曾经学习过绝对值的概念:在数轴上,表示一个数的点与原点的距离叫做这个数的绝对值,记作实际上,数轴上表示数的点与原点的距离可记作;数轴上表示数的点与表示数2的点的距离可记作,也就是说,在数轴上,如果点表示的数记为点表示的数记为,则两点间的距离就可记作(学以致用)(1)数轴上表示1和的两点之间的距离是_;(2)数轴上表示与的两点和之间的距离为2,那么为_(解决问题)如图,已知分别为数轴上的两点,点表示的数是,

17、点表示的数是50(3)现有一只蚂蚁从点出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一只蚂蚁恰好从点出发,以每秒2个单位长度的速度沿数轴向右移动求两只蚂蚁在数轴上相遇时所用的时间;求两只蚂蚁在数轴上距离10个单位长度时的时间(数学理解)(4)数轴上两点对应的数分别为,已知,点从出发向右以每秒3个单位长度的速度运动表达出秒后之间的距离_(用含的式子表示)【参考答案】*试卷处理标记,请不要删除一、七年级上册数学压轴题1(1);(2)【分析】(1)根据角平分线的定义求出和,然后根据代入数据进行计算即可得解;(2)根据角平分线的定义表示出和,然后根据计算即可得解【详解】解:(1)平分,平分,解析

18、:(1);(2)【分析】(1)根据角平分线的定义求出和,然后根据代入数据进行计算即可得解;(2)根据角平分线的定义表示出和,然后根据计算即可得解【详解】解:(1)平分,平分,(2)平分,平分,=【点睛】本题考查了角的计算,角平分线的定义,准确识图是解题的关键,难点在于要注意整体思想的利用2(1)x2或x10;(2)或或10【分析】(1)设所求数为x,根据优点的定义列出方程x(2)2(4x)或x(2)2(x4),解方程即可;(2)根据题意点P在线段AB上,由解析:(1)x2或x10;(2)或或10【分析】(1)设所求数为x,根据优点的定义列出方程x(2)2(4x)或x(2)2(x4),解方程即可

19、;(2)根据题意点P在线段AB上,由优点的定义可分4种情况:P为(A,B)的优点;A为(B,P)的优点;P为(B,A)的优点;B为(A,P)的优点,设点P表示的数为y,根据优点的定义列出方程,进而得出t的值【详解】解:(1)设所求数为x,由题意得x(2)2(4x)或x(2)2(x4),解得:x2或x10;(2)设点P表示的数为y,分四种情况:P为(A,B)的优点由题意,得y(20)2(40y),解得y20,t(4020)3(秒);A为(B,P)的优点由题意,得40(20)2y(20),解得y10,t(4010)310(秒);P为(B,A)的优点由题意,得40y2y(20),解得y0,t(400

20、)3(秒);B为(A,P)的优点40-(-20)=2(40-x),解得:x=10t=(40-10) 3=10(秒)综上可知,当t为10秒、秒或秒时,P、A和B中恰有一个点为其余两点的优点故答案为:或或10【点睛】本题考查了数轴及一元一次方程的应用,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解3(1)-1;1;5;(2)4x+10或2x+12;(3)不变,理由见解析【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b解析:(1)-1;1;5;(2)4x+10或2x+12;(3)不变,理由见解析

21、【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)根据x的范围,确定x+1,x-3,5-x的符号,然后根据绝对值的意义即可化简;(3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2【详解】解:(1)b是最小的正整数,b=1根据题意得:c-5=0且a+b=0,a=-1,b=1,c=5故答案是:-1;1;5;(2)当0x1时,x+10,x-10,x+50,则:|x+1|-|x-1|+2|x+5|=x+1-(1-x)+2(x+5)=x+1-1+x+2x+10=4x+10;当1x2时,x+10,x-1

22、0,x+50|x+1|-|x-1|+2|x+5|=x+1-(x-1)+2(x+5)=x+1-x+1+2x+10=2x+12;(3)不变理由如下:t秒时,点A对应的数为-1-t,点B对应的数为2t+1,点C对应的数为5t+5BC=(5t+5)-(2t+1)=3t+4,AB=(2t+1)-(-1-t)=3t+2,BC-AB=(3t+4)-(3t+2)=2,即BC-AB值的不随着时间t的变化而改变【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想4(1)1或-5;(2

23、)6,4或-6;(3)1;(4)不变,线段MN的长度为4【分析】(1)根据两点间的距离公式,到2点距离是3的点有两个,即可求解;(2)当点a在点-4和点2之间时,的值最小解析:(1)1或-5;(2)6,4或-6;(3)1;(4)不变,线段MN的长度为4【分析】(1)根据两点间的距离公式,到2点距离是3的点有两个,即可求解;(2)当点a在点-4和点2之间时,的值最小;分两种情况,或,化简绝对值即可求得;(3)根据表示点a到5,1,4三点的距离的和,即可求解;(4)因为点A表示的数为4和AC8,所以点C表示的数为-4,点P表示的数为(1-6t),则点M表示的数为 ,点N表示的数为 ,两数相减取绝对

24、值即可求得【详解】(1) a(2)3或a(2)-3解得a=1或-5故答案为:1或-5(2)当点a在点-4和点2之间时,的值最小数a的点位于-4与2之间a+40,a-20 =a+4-a+2=6;当时a+40,a-20= =10解得a= -6当时a+40,a-20= =10解得a= 4故答案为:6,4或-6(3)根据表示一点到-5,1,4三点的距离的和所以当a=1时,式子的值最小此时的最小值是9故答案为:1(4)AC8点C表示的数为-4又点P表示的数为(1-6t)则点M表示的数为 ,点N表示的数为 线段MN的长度不发生变化,其值为4【点睛】此题考查绝对值的意义、数轴、结合数轴求两点之间的距离,掌握

25、数形结合的思想是解决此题的关键5(1)15,3;(2)3;(3)存在,1或【分析】(1)根据两点间的距离公式可求点表示的数;根据线段的倍分关系可求点表示的数;(2)算出点P运动到点C的时间即可求解;(3)分点在点左侧时,点解析:(1)15,3;(2)3;(3)存在,1或【分析】(1)根据两点间的距离公式可求点表示的数;根据线段的倍分关系可求点表示的数;(2)算出点P运动到点C的时间即可求解;(3)分点在点左侧时,点在点右侧时两种情况讨论即可求解【详解】解:(1)点表示的数是;点表示的数是故答案为:15,3;(2)当P运动到C点时,s,则,点Q与点B的距离是:;(3)假设存在,当点在点左侧时,解

26、得此时点表示的数是1;当点在点右侧时,解得此时点表示的数是综上所述,在运动过程中存在,此时点表示的数为1或【点睛】考查了数轴、两点间的距离,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解6(1)-1,2,7;(2)2;(3)BC-AB的值不随着时间t的变化而改变,其值为2【分析】(1)根据a是最大的负整数,即可确定a的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即解析:(1)-1,2,7;(2)2;(3)BC-AB的值不随着时间t的变化而改变,其值为2【分析】(1)根据a是最大的负整数,即可确定a的值,然后根据非负数的性质,几个非负数的和是0,

27、则每个数是0,即可求得b,c的值;(2)根据两点间的距离公式可求BC、AB的值,进一步得到BC-AB的值;(3)先求出BC=3t+5,AB=3t+3,从而得出BC-AB,从而求解【详解】解:(1)a是最大的负整数,a=-1,|c-7|+(2a+b)2=0,c-7=0,2a+b=0,b=2,c=7故答案为:-1,2,7;(2)BC-AB=(7-2)-(2+1)=5-3=2故此时BC-AB的值是2;(3)BC-AB的值不随着时间t的变化而改变,其值为2理由如下:t秒时,点A对应的数为-1-t,点B对应的数为2t+2,点C对应的数为5t+7BC=(5t+7)-(2t+2)=3t+5,AB=(2t+2

28、)-(-1-t)=3t+3,BC-AB=(3t+5)-(3t+3)=2,BC-AB的值不随着时间t的变化而改变,其值为2【点睛】此题考查有理数及整式的混合运算,以及数轴,正确理解AB,BC的变化情况是关键7(1)C1,C3;(2)-2或6或8;16或22或13【分析】(1)根据题意求得CA与BC的关系,得到答案;(2)根据PA=2PB列方程求解;分当P为A、B关联点、A为P、B关联点、解析:(1)C1,C3;(2)-2或6或8;16或22或13【分析】(1)根据题意求得CA与BC的关系,得到答案;(2)根据PA=2PB列方程求解;分当P为A、B关联点、A为P、B关联点、B为A、P关联点、B为P

29、、A关联点四种可能列方程解答【详解】解:(1)点A表示数-2,点B表示数1,C1表示的数为-1,AC1=1,BC1=2,C1是点A、B的“关联点”;点A表示数-2,点B表示数1,C2表示的数为2,AC2=4,BC1=1,C2不是点A、B的“关联点”;点A表示数-2,点B表示数1,C3表示的数为4,AC3=6,BC3=3,C3是点A、B的“关联点”;点A表示数-2,点B表示数1,C4表示的数为6,AC4=8,BC4=5,C4不是点A、B的“关联点”;故答案为:C1,C3;(2)若点P在点B的左侧,且点P是点A,B的“关联点”,设点 P 表示的数为 x()当点P在A的左侧时,则有:2PA=PB,即

30、2(4-x)=10-x,解得,x=-2;()当点P在A、B之间时,有2PA=PB或PA=2PB,即有2(x-4)=10-x或x-4=2(10-x),解得,x=6或x=8;因此点P表示的数为-2或6或8;若点P在点B的右侧,()若点P是点A、B的“关联点”,则有,2PB=PA,即2(x-10)=x-4,解得,x=16;()若点B是点A、P的“关联点”,则有,2AB=PB或AB=2PB,即2(10-4)=x-10或10-4=2(x-10),得,x=22或x=13;()若点A是点B、P的“关联点”,则有,2AB=PA,即2(10-4)=x-4,解得,x=16;因此点P表示的数为16或22或13【点睛

31、】本题考查了数轴及数轴上两点的距离、动点问题,认真理解新定义:关联点表示的数是与前面的点A的距离是到后面的数B的距离的2倍,列式可得结果8(1)3;(2)3,7;(3)197,;(4)9【分析】(1)设需将点C向左移动x个单位,再根据数轴的定义建立方程,解方程即可得;(2)分为三种:移动点B、C;移动点A、C;移动点A、B,再解析:(1)3;(2)3,7;(3)197,;(4)9【分析】(1)设需将点C向左移动x个单位,再根据数轴的定义建立方程,解方程即可得;(2)分为三种:移动点B、C;移动点A、C;移动点A、B,再利用数轴的定义分别求出移动所走的距离和即可得;(3)先根据前4次归纳类推出一

32、般规律,再列出运算式子,计算有理数的加减法即可得;(4)分,和数四种情况,再分别结合数轴的定义、化简绝对值即可得【详解】(1)设需将点C向左移动x个单位,由题意得:,解得,即需将点C向左移动3个单位,故答案为:3;(2),由题意,分以下三种情况:移动点B、C,把点B向左移动2个单位,点C向左移动7个单位,此时移动所走的距离和为;移动点A、C,把点A向右移动2个单位,点C向左移动5个单位,此时移动所走的距离和为;移动点A、B,把点A向右移动7个单位,点B向右移动5个单位,此时移动所走的距离和为;综上,移动方法有3种,其中移动所走的距离和最小的是7个单位,故答案为:3,7;(3)第次跳的步数为,第

33、次跳的步数为,第次跳的步数为,第次跳的步数为,归纳类推得:第n次跳的步数为,其中n为正整数,则第99次跳的步数为,落脚点表示的数为,故答案为:197,;(4)由题意,分以下四种情况:当时,则;当时,则,;当时,则,;当时,则;综上,则的最小值是9,故答案为:9【点睛】本题考查了数轴、化简绝对值、一元一次方程的应用等知识点,熟练掌握数轴的定义是解题关键9(1)-1;(2)1+t;121;线段CB与AC相等,理由详见解析【分析】(1)依据条件即可得到点A表示6,点B表示6+104,再根据点C是线段AB的中点,即可得出点C表示的数;解析:(1)-1;(2)1+t;121;线段CB与AC相等,理由详见

34、解析【分析】(1)依据条件即可得到点A表示6,点B表示6+104,再根据点C是线段AB的中点,即可得出点C表示的数;(2)依据点C表示的数为1,点以每秒1cm的速度向右移动,即可得到运动t秒时,点C表示的数是1+t;依据点A表示的数为62210,点B表示的数为4+4212,点C表示的数是1+21,即可得到CBAC的值;依据点A表示的数为62t,点B表示的数为4+4t,点C表示的数是1+t,即可得到点A、B、C在运动的过程中,线段CB与AC相等【详解】解:(1)一个点从数轴上的原点开始,先向左移动6cm到达A点,再从A点向右移动10cm到达B点,点A表示6,点B表示6+104,又点C是线段AB的

35、中点,点C表示的数为1,故答案为:1(2)点C表示的数为1,点以每秒1cm的速度向右移动,运动t秒时,点C表示的数是1+t,故答案为:1+t;由题可得,当t2秒时,点A表示的数为62210,点B表示的数为4+4212,点C表示的数是1+21,当t2秒时,AC11,BC11,CBAC121,故答案为:121;点A、B、C在运动的过程中,线段CB与AC相等理由:由题可得,点A表示的数为62t,点B表示的数为4+4t,点C表示的数是1+t,BC(4+4t)(1+t)5+3t,AC(1+t)(62t)5+3t,点A、B、C在运动的过程中,线段CB与AC相等【点睛】本题考查数轴上动点问题,整式的加减,与

36、线段有关的动点问题(1)理解数轴上线段的中点表示的数是两个端点所表示的数的和除以2;(2)掌握数轴上两点之间的距离求解方法是解决问题的关键,数轴上两点之间对应的距离等于它们所表示的数差的绝对值10(1)10,3;24t,8+t;(2)t,相遇点表示的数为;(3)t5或;(4)线段的长不发生变化,MN=5【分析】(1)根据A,B两点之间的距离,线段的中点表示的数为,即可得到答解析:(1)10,3;24t,8+t;(2)t,相遇点表示的数为;(3)t5或;(4)线段的长不发生变化,MN=5【分析】(1)根据A,B两点之间的距离,线段的中点表示的数为,即可得到答案;根据题意直接表示出P,Q所对应的数

37、,即可;(2)当P、Q两点相遇时,P、Q表示的数相等列方程,得到t的值,进而得到 P、Q相遇的点所对应的数;(3)由t秒后,点P表示的数24t,点Q表示的数为8+t,于是得到PQ的表达式,结合,列方程即可得到结论;(4)由点M表示的数为,点N表示的数为,即可得到结论【详解】解:(1)A、B两点间的距离AB|28|10,线段AB的中点表示的数为:,故答案是:10,3;由题意可得,后,点P表示的数为:24t,点Q表示的数为:8+t,故答是:24t,8+t;(2)当P、Q两点相遇时,P、Q表示的数相等24t8+t,解得:t,当t时,P、Q相遇,此时,8+t8,相遇点表示的数为;(3)t秒后, PQ|

38、(24t)(8+t)|3t10|,105,|3t10|5,解得:t5或, 当t5或,;(4)M为的中点,N为的中点,点M表示的数为,点N表示的数为,MN,即:线段的长不发生变化,MN=5【点睛】本题考查了一元一次方程的应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程是解题的关键11(1)120;(2),见解析;(3)见解析,或【分析】(1)根据角平分线的性质得到,再结合已知条件即可得出答案;(2)根据角平分线的性质与已知条件进行角之间的加减即可证明出结论;(3)根据角解析:(1)120;(2),见解析;(3)见解析,或【分析】(1)根

39、据角平分线的性质得到,再结合已知条件即可得出答案;(2)根据角平分线的性质与已知条件进行角之间的加减即可证明出结论;(3)根据角平分线的性质结合已知条件进行角度之间的加减运算,分类讨论得出结论即可【详解】解:(1), ,平分平分,故答案为:120;(2)证明:平分,;(3)如图1,当在的左侧时,平分,为的平分线,;如图2,当在的右侧时,平分,为的平分线,综上所述,的度数为或【点睛】本题主要考查了角平分线的性质与角度之间的加减运算,关键在于根据图形分析出各角之间的数量关系12(1)50;(2)或6;(3)95或145【分析】(1)根据OA平分POB, 设POAAOBx,根据题意列方程即可求解;(

40、2)分射线OB在POA内部和射线OB在POA解析:(1)50;(2)或6;(3)95或145【分析】(1)根据OA平分POB, 设POAAOBx,根据题意列方程即可求解;(2)分射线OB在POA内部和射线OB在POA外部两种情况分类讨论,分别设AOBx,AOE3x,分别求出x的值,即可求值;(3)根据题意分类讨论,根据周角定义分别求出AOA,再根据AOPAOP,结合已知即可求解【详解】解:(1)OA平分POB,设POAAOBx,AOPAOP= x,AOB60,x2x60,x20,BOF902x50;(2)当点O运动到使点A在射线OP的左侧,射线OB在POA内部时,AOE3AOB,设AOBx,A

41、OE3x,OPEF,AOF1803x,AOP903x,AOPAOP,AOPAOP,OPEF,3x90,x,;当点O运动到使A在射线OP的左侧,但是射线OB在POA外部时,AOE3AOB,设AOBx,AOE3x,AOPAOP,OPEF,3x90,x24,;综上所述:的值是或6;(3)BOP95或145;如图3,当AOB130时,由图可得:AOAAOBAOB1306070,又AOPAOP,AOP35,BOP603595;如图4,当AOB130时,由图可得AOA36013060170,又AOPAOP,AOP85,BOP6085145;综上所述:BOP的度数为95或145【点睛】本题考查了角平分线的的定义和角的和差计算,根据题意正确画出图形进行分类讨论是解题关键13(1)是;MPN=,3;(2)t=,4,5秒【分析】(1)根据新定义的理解,即可得到答案;根据题意,可分为两种情况:当MPQ=2QPN时;当QPN=2MPQ时;分别求出解析:(1)是;MPN=,3;(2)t=,4,5秒【分析】(1)根据新定义的理解,即可得到答案;根据题意,可分为两种情况:

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服